ﻻ يوجد ملخص باللغة العربية
We measured the temperature dependences of the static magnetization and the spin excitation in a square-lattice multiferroics Ba$_2$MnGe$_2$O$_7$. An anisotropy gap of the observed low energy mode is scaled by electric polarization rather than a power of sublattice moment. Spin nematic interaction in effective spin Hamiltonian, which is equivalent to interaction of electric polarization, is responsible for the easy-axis anisotropy. The nontrivial behavior of the anisotropy gap can be rationalized as change of the hybridized $d$-$p$ orbital with temperature, leading to the temperature dependence of the spin nematic interaction.
We report on spherical neutron polarimetry and unpolarized neutron diffraction in zero magnetic field as well as flipping ratio and static magnetization measurements in high magnetic fields on the multiferroic square lattice antiferromagnet Ba$_2$CoG
In the quest to realize a quantum spin liquid (QSL), magnetic long-range order is hardly welcome. Yet it can offer deep insights into a complex world of strong correlations and fluctuations. Much hope was placed in the cubic pyrochlore Yb$_2$Ti$_2$O$
We have investigated the microwave non-reciprocity for a non-centrosymmetric antiferromagnet Ba$_2$MnGe$_2$O$_7$. The magnon modes expected by the conventional spin wave theory for staggered antiferromagnets are certainly observed. The magnitudes of
We report low temperature specific heat and muon spin relaxation/rotation ($mu$SR) measurements on both polycrystalline and single crystal samples of the pyrochlore magnet Yb$_2$Ti$_2$O$_7$. This system is believed to possess a spin Hamiltonian suppo
The elementary excitations of the spin-ice materials Ho$_2$Ti$_2$O$_7$ and Dy$_2$Ti$_2$O$_7$ in zero field can be described as independent magnetic monopoles. We investigate the influence of these exotic excitations on the heat transport by measuring