ﻻ يوجد ملخص باللغة العربية
We report on spherical neutron polarimetry and unpolarized neutron diffraction in zero magnetic field as well as flipping ratio and static magnetization measurements in high magnetic fields on the multiferroic square lattice antiferromagnet Ba$_2$CoGe$_2$O$_7$. We found that in zero magnetic field the magnetic space group is $Cmm2$ with sublattice magnetization parallel to the [100] axis of this orthorhombic setting. The spin canting has been found to be smaller than $0.2^circ$ in the ground state. This assignment is in agreement with the field-induced changes of the magnetic domain structure below 40 mT as resolved by spherical neutron polarimetry. The magnitude of the ordered moment has been precisely determined. Above the magnetic ordering temperature short-range magnetic fluctuations are observed. Based on the high-field magnetization data, we refined the parameters of the recently proposed microscopic spin model describing the multiferroic phase of Ba$_2$CoGe$_2$O$_7$.
Non-reciprocal directional dichroism assigns an optical diode-like property to non-centrosymmetric magnets, making them appealing for low-dissipation optical devices. However, the direct electric control of this phenomenon at constant temperatures is
For a symmetry consistent theoretical description of the multiferroic phase of Ba$_2$CoGe$_2$O$_7$ a precise knowledge of its crystal structure is a prerequisite. In our previous synchrotron X-ray diffraction experiment on multiferroic Ba$_2$CoGe$_2$
We measured the temperature dependences of the static magnetization and the spin excitation in a square-lattice multiferroics Ba$_2$MnGe$_2$O$_7$. An anisotropy gap of the observed low energy mode is scaled by electric polarization rather than a powe
Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-depe