ﻻ يوجد ملخص باللغة العربية
In our previous work, we investigated the relation between zeta functions and discrete-time models including random and quantum walks. In this paper, we introduce a zeta function for the continuous-time model (CTM) and consider CTMs including the corresponding random and quantum walks on the d-dimensional torus.
Our previous work presented explicit formulas for the generalized zeta function and the generalized Ihara zeta function corresponding to the Grover walk and the positive-support version of the Grover walk on the regular graph via the Konno-Sato theor
Our previous works presented zeta functions by the Konno-Sato theorem or the Fourier analysis for one-particle models including random walks, correlated random walks, quantum walks, and open quantum random walks. This paper presents a zeta function f
Recently the Ihara zeta function for the finite graph was extended to infinite one by Clair and Chinta et al. In this paper, we obtain the same expressions by a different approach from their analytical method. Our new approach is to take a suitable l
In this paper, following the recent paper on Walk/Zeta Correspondence by the first author and his coworkers, we compute the zeta function for the three- and four-state quantum walk and correlated random walk, and the multi-state random walk on the on
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo