ﻻ يوجد ملخص باللغة العربية
Our previous works presented zeta functions by the Konno-Sato theorem or the Fourier analysis for one-particle models including random walks, correlated random walks, quantum walks, and open quantum random walks. This paper presents a zeta function for multi-particle models with probabilistic or quantum interactions, called the interacting particle system (IPS). The zeta function for the tensor-type IPS is computed.
Our previous work presented explicit formulas for the generalized zeta function and the generalized Ihara zeta function corresponding to the Grover walk and the positive-support version of the Grover walk on the regular graph via the Konno-Sato theor
In our previous work, we investigated the relation between zeta functions and discrete-time models including random and quantum walks. In this paper, we introduce a zeta function for the continuous-time model (CTM) and consider CTMs including the cor
Recently the Ihara zeta function for the finite graph was extended to infinite one by Clair and Chinta et al. In this paper, we obtain the same expressions by a different approach from their analytical method. Our new approach is to take a suitable l
In this paper, following the recent paper on Walk/Zeta Correspondence by the first author and his coworkers, we compute the zeta function for the three- and four-state quantum walk and correlated random walk, and the multi-state random walk on the on
We study the connection between mutually unbiased bases and mutually orthogonal extraordinary supersquares, a wider class of squares which does not contain only the Latin squares. We show that there are four types of complete sets of mutually orthogo