ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Speech Recognition Accuracy of Local POI Using Geographical Models

124   0   0.0 ( 0 )
 نشر من قبل Songjun Cao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays voice search for points of interest (POI) is becoming increasingly popular. However, speech recognition for local POI has remained to be a challenge due to multi-dialect and massive POI. This paper improves speech recognition accuracy for local POI from two aspects. Firstly, a geographic acoustic model (Geo-AM) is proposed. The Geo-AM deals with multi-dialect problem using dialect-specific input feature and dialect-specific top layer. Secondly, a group of geo-specific language models (Geo-LMs) are integrated into our speech recognition system to improve recognition accuracy of long tail and homophone POI. During decoding, specific language models are selected on demand according to users geographic location. Experiments show that the proposed Geo-AM achieves 6.5%$sim$10.1% relative character error rate (CER) reduction on an accent testset and the proposed Geo-AM and Geo-LM totally achieve over 18.7% relative CER reduction on Tencent Map task.

قيم البحث

اقرأ أيضاً

394 - Keqi Deng , Songjun Cao , Long Ma 2021
Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still cha llenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
103 - Yukun Liu , Ta Li , Pengyuan Zhang 2021
Recently neural architecture search(NAS) has been successfully used in image classification, natural language processing, and automatic speech recognition(ASR) tasks for finding the state-of-the-art(SOTA) architectures than those human-designed archi tectures. NAS can derive a SOTA and data-specific architecture over validation data from a pre-defined search space with a search algorithm. Inspired by the success of NAS in ASR tasks, we propose a NAS-based ASR framework containing one search space and one differentiable search algorithm called Differentiable Architecture Search(DARTS). Our search space follows the convolution-augmented transformer(Conformer) backbone, which is a more expressive ASR architecture than those used in existing NAS-based ASR frameworks. To improve the performance of our method, a regulation method called Dynamic Search Schedule(DSS) is employed. On a widely used Mandarin benchmark AISHELL-1, our best-searched architecture outperforms the baseline Conform model significantly with about 11% CER relative improvement, and our method is proved to be pretty efficient by the search cost comparisons.
Neural network architectures are at the core of powerful automatic speech recognition systems (ASR). However, while recent researches focus on novel model architectures, the acoustic input features remain almost unchanged. Traditional ASR systems rel y on multidimensional acoustic features such as the Mel filter bank energies alongside with the first, and second order derivatives to characterize time-frames that compose the signal sequence. Considering that these components describe three different views of the same element, neural networks have to learn both the internal relations that exist within these features, and external or global dependencies that exist between the time-frames. Quaternion-valued neural networks (QNN), recently received an important interest from researchers to process and learn such relations in multidimensional spaces. Indeed, quaternion numbers and QNNs have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with up to four times less learning parameters than real-valued models. We propose to investigate modern quaternion-valued models such as convolutional and recurrent quaternion neural networks in the context of speech recognition with the TIMIT dataset. The experiments show that QNNs always outperform real-valued equivalent models with way less free parameters, leading to a more efficient, compact, and expressive representation of the relevant information.
Automatic recognition of disordered speech remains a highly challenging task to date. The underlying neuro-motor conditions, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of impaired s peech required for ASR system development. To this end, data augmentation techniques play a vital role in current disordered speech recognition systems. In contrast to existing data augmentation techniques only modifying the speaking rate or overall shape of spectral contour, fine-grained spectro-temporal differences between disordered and normal speech are modelled using deep convolutional generative adversarial networks (DCGAN) during data augmentation to modify normal speech spectra into those closer to disordered speech. Experiments conducted on the UASpeech corpus suggest the proposed adversarial data augmentation approach consistently outperformed the baseline augmentation methods using tempo or speed perturbation on a state-of-the-art hybrid DNN system. An overall word error rate (WER) reduction up to 3.05% (9.7% relative) was obtained over the baseline system using no data augmentation. The final learning hidden unit contribution (LHUC) speaker adapted system using the best adversarial augmentation approach gives an overall WER of 25.89% on the UASpeech test set of 16 dysarthric speakers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا