ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Accent Identification and Accented Speech Recognition Under a Framework of Self-supervised Learning

395   0   0.0 ( 0 )
 نشر من قبل Songjun Cao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still challenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.



قيم البحث

اقرأ أيضاً

Recently self-supervised learning has emerged as an effective approach to improve the performance of automatic speech recognition (ASR). Under such a framework, the neural network is usually pre-trained with massive unlabeled data and then fine-tuned with limited labeled data. However, the non-streaming architecture like bidirectional transformer is usually adopted by the neural network to achieve competitive results, which can not be used in streaming scenarios. In this paper, we mainly focus on improving the performance of streaming transformer under the self-supervised learning framework. Specifically, we propose a novel two-stage training method during fine-tuning, which combines knowledge distilling and self-training. The proposed training method achieves 16.3% relative word error rate (WER) reduction on Librispeech noisy test set. Finally, by only using the 100h clean subset of Librispeech as the labeled data and the rest (860h) as the unlabeled data, our streaming transformer based model obtains competitive WERs 3.5/8.7 on Librispeech clean/noisy test sets.
Local dialects influence people to pronounce words of the same language differently from each other. The great variability and complex characteristics of accents creates a major challenge for training a robust and accent-agnostic automatic speech rec ognition (ASR) system. In this paper, we introduce a cross-accented English speech recognition task as a benchmark for measuring the ability of the model to adapt to unseen accents using the existing CommonVoice corpus. We also propose an accent-agnostic approach that extends the model-agnostic meta-learning (MAML) algorithm for fast adaptation to unseen accents. Our approach significantly outperforms joint training in both zero-shot, few-shot, and all-shot in the mixed-region and cross-region settings in terms of word error rate.
Supervised learning for single-channel speech enhancement requires carefully labeled training examples where the noisy mixture is input into the network and the network is trained to produce an output close to the ideal target. To relax the condition s on the training data, we consider the task of training speech enhancement networks in a self-supervised manner. We first use a limited training set of clean speech sounds and learn a latent representation by autoencoding on their magnitude spectrograms. We then autoencode on speech mixtures recorded in noisy environments and train the resulting autoencoder to share a latent representation with the clean examples. We show that using this training schema, we can now map noisy speech to its clean version using a network that is autonomously trainable without requiring labeled training examples or human intervention.
This paper describes the AISpeech-SJTU system for the accent identification track of the Interspeech-2020 Accented English Speech Recognition Challenge. In this challenge track, only 160-hour accented English data collected from 8 countries and the a uxiliary Librispeech dataset are provided for training. To build an accurate and robust accent identification system, we explore the whole system pipeline in detail. First, we introduce the ASR based phone posteriorgram (PPG) feature to accent identification and verify its efficacy. Then, a novel TTS based approach is carefully designed to augment the very limited accent training data for the first time. Finally, we propose the test time augmentation and embedding fusion schemes to further improve the system performance. Our final system is ranked first in the challenge and outperforms all the other participants by a large margin. The submitted system achieves 83.63% average accuracy on the challenge evaluation data, ahead of the others by more than 10% in absolute terms.
Neural network based speech recognition systems suffer from performance degradation due to accented speech, especially unfamiliar accents. In this paper, we study the supervised contrastive learning framework for accented speech recognition. To build different views (similar positive data samples) for contrastive learning, three data augmentation techniques including noise injection, spectrogram augmentation and TTS-same-sentence generation are further investigated. From the experiments on the Common Voice dataset, we have shown that contrastive learning helps to build data-augmentation invariant and pronunciation invariant representations, which significantly outperforms traditional joint training methods in both zero-shot and full-shot settings. Experiments show that contrastive learning can improve accuracy by 3.66% (zero-shot) and 3.78% (full-shot) on average, comparing to the joint training method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا