ﻻ يوجد ملخص باللغة العربية
Most of the recent state-of-the-art results for speaker verification are achieved by X-vector and its subsequent variants. In this paper, we propose a new network architecture which aggregates the channel and context interdependence features from multi aspect based on Time Delay Neural Network (TDNN). Firstly, we use the SE-Res2Blocks as in ECAPA-TDNN to explicitly model the channel interdependence to realize adaptive calibration of channel features, and process local context features in a multi-scale way at a more granular level compared with conventional TDNN-based methods. Secondly, we explore to use the encoder structure of Transformer to model the global context interdependence features at an utterance level which can capture better long term temporal characteristics. Before the pooling layer, we aggregate the outputs of SE-Res2Blocks and Transformer encoder to leverage the complementary channel and context interdependence features learned by themself respectively. Finally, instead of performing a single attentive statistics pooling, we also find it beneficial to extend the pooling method in a multi-head way which can discriminate features from multiple aspect. The proposed MACCIF-TDNN architecture can outperform most of the state-of-the-art TDNN-based systems on VoxCeleb1 test sets.
Learning robust speaker embeddings is a crucial step in speaker diarization. Deep neural networks can accurately capture speaker discriminative characteristics and popular deep embeddings such as x-vectors are nowadays a fundamental component of mode
There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV)
At present Automatic Speaker Recognition system is a very important issue due to its diverse applications. Hence, it becomes absolutely necessary to obtain models that take into consideration the speaking style of a person, vocal tract information, t
Recently, ad-hoc microphone array has been widely studied. Unlike traditional microphone array settings, the spatial arrangement and number of microphones of ad-hoc microphone arrays are not known in advance, which hinders the adaptation of tradition
Open-set speaker recognition can be regarded as a metric learning problem, which is to maximize inter-class variance and minimize intra-class variance. Supervised metric learning can be categorized into entity-based learning and proxy-based learning.