ﻻ يوجد ملخص باللغة العربية
Recently, ad-hoc microphone array has been widely studied. Unlike traditional microphone array settings, the spatial arrangement and number of microphones of ad-hoc microphone arrays are not known in advance, which hinders the adaptation of traditional speaker verification technologies to ad-hoc microphone arrays. To overcome this weakness, in this paper, we propose attention-based multi-channel speaker verification with ad-hoc microphone arrays. Specifically, we add an inter-channel processing layer and a global fusion layer after the pooling layer of a single-channel speaker verification system. The inter-channel processing layer applies a so-called residual self-attention along the channel dimension for allocating weights to different microphones. The global fusion layer integrates all channels in a way that is independent to the number of the input channels. We further replace the softmax operator in the residual self-attention with sparsemax, which forces the channel weights of very noisy channels to zero. Experimental results with ad-hoc microphone arrays of over 30 channels demonstrate the effectiveness of the proposed methods. For example, the multi-channel speaker verification with sparsemax achieves an equal error rate (EER) of over 20% lower than oracle one-best system on semi-real data sets, and over 30% lower on simulation data sets, in test scenarios with both matched and mismatched channel numbers.
In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trai
Speech separation has been shown effective for multi-talker speech recognition. Under the ad hoc microphone array setup where the array consists of spatially distributed asynchronous microphones, additional challenges must be overcome as the geometry
This paper describes the systems submitted by team HCCL to the Far-Field Speaker Verification Challenge. Our previous work in the AIshell Speaker Verification Challenge 2019 shows that the powerful modeling abilities of Neural Network architectures c
Large performance degradation is often observed for speaker ver-ification systems when applied to a new domain dataset. Givenan unlabeled target-domain dataset, unsupervised domain adaptation(UDA) methods, which usually leverage adversarial training
Recently, the research on ad-hoc microphone arrays with deep learning has drawn much attention, especially in speech enhancement and separation. Because an ad-hoc microphone array may cover such a large area that multiple speakers may locate far apar