ﻻ يوجد ملخص باللغة العربية
Open-set speaker recognition can be regarded as a metric learning problem, which is to maximize inter-class variance and minimize intra-class variance. Supervised metric learning can be categorized into entity-based learning and proxy-based learning. Most of the existing metric learning objectives like Contrastive, Triplet, Prototypical, GE2E, etc all belong to the former division, the performance of which is either highly dependent on sample mining strategy or restricted by insufficient label information in the mini-batch. Proxy-based losses mitigate both shortcomings, however, fine-grained connections among entities are either not or indirectly leveraged. This paper proposes a Masked Proxy (MP) loss which directly incorporates both proxy-based relationships and pair-based relationships. We further propose Multinomial Masked Proxy (MMP) loss to leverage the hardness of speaker pairs. These methods have been applied to evaluate on VoxCeleb test set and reach state-of-the-art Equal Error Rate(EER).
In this paper, we propose a new differentiable neural network alignment mechanism for text-dependent speaker verification which uses alignment models to produce a supervector representation of an utterance. Unlike previous works with similar approach
There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV)
J-vector has been proved to be very effective in text-dependent speaker verification with short-duration speech. However, the current state-of-the-art back-end classifiers, e.g. joint Bayesian model, cannot make full use of such deep features. In thi
We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allow
Speaker embeddings become growing popular in the text-independent speaker verification task. In this paper, we propose two improvements during the training stage. The improvements are both based on triplet cause the training stage and the evaluation