ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Invariant Representation with Consistency and Diversity for Semi-supervised Source Hypothesis Transfer

211   0   0.0 ( 0 )
 نشر من قبل Xiaodong Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semi-supervised domain adaptation (SSDA) aims to solve tasks in target domain by utilizing transferable information learned from the available source domain and a few labeled target data. However, source data is not always accessible in practical scenarios, which restricts the application of SSDA in real world circumstances. In this paper, we propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions. In SSHT, we are facing two challenges: (1) The insufficient labeled target data may result in target features near the decision boundary, with the increased risk of mis-classification; (2) The data are usually imbalanced in source domain, so the model trained with these data is biased. The biased model is prone to categorize samples of minority categories into majority ones, resulting in low prediction diversity. To tackle the above issues, we propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data and maintaining the prediction diversity when adapting model to target domain. Encouraging consistency regularization brings difficulty to memorize the few labeled target data and thus enhances the generalization ability of the learned model. We further integrate Batch Nuclear-norm Maximization into our method to enhance the discriminability and diversity. Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets. The code is available at https://github.com/Wang-xd1899/SSHT.

قيم البحث

اقرأ أيضاً

168 - Ning Ma , Jiajun Bu , Lixian Lu 2021
Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be in feasible in practice when source data are unavailable due to data-privacy concerns. To address this issue, we propose a novel adaptation method via hypothesis transfer without accessing source data at adaptation stage. In order to fully use the limited target data, a semi-supervised mutual enhancement method is proposed, in which entropy minimization and augmented label propagation are used iteratively to perform inter-domain and intra-domain alignments. Compared with state-of-the-art methods, the experimental results on three public datasets demonstrate that our method gets up to 19.9% improvements on semi-supervised adaptation tasks.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learni ng and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on popular benchmarks including CIFAR-10, CUB-200, and MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and FixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Domain adaptation aims to generalize a model from a source domain to tackle tasks in a related but different target domain. Traditional domain adaptation algorithms assume that enough labeled data, which are treated as the prior knowledge are availab le in the source domain. However, these algorithms will be infeasible when only a few labeled data exist in the source domain, and thus the performance decreases significantly. To address this challenge, we propose a Domain-invariant Graph Learning (DGL) approach for domain adaptation with only a few labeled source samples. Firstly, DGL introduces the Nystrom method to construct a plastic graph that shares similar geometric property as the target domain. And then, DGL flexibly employs the Nystrom approximation error to measure the divergence between plastic graph and source graph to formalize the distribution mismatch from the geometric perspective. Through minimizing the approximation error, DGL learns a domain-invariant geometric graph to bridge source and target domains. Finally, we integrate the learned domain-invariant graph with the semi-supervised learning and further propose an adaptive semi-supervised model to handle the cross-domain problems. The results of extensive experiments on popular datasets verify the superiority of DGL, especially when only a few labeled source samples are available.
Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a models performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch. Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. OpenMatch achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
157 - Wei Li , Yuanjun Xiong , Shuo Yang 2021
Online tracking of multiple objects in videos requires strong capacity of modeling and matching object appearances. Previous methods for learning appearance embedding mostly rely on instance-level matching without considering the temporal continuity provided by videos. We design a new instance-to-track matching objective to learn appearance embedding that compares a candidate detection to the embedding of the tracks persisted in the tracker. It enables us to learn not only from videos labeled with complete tracks, but also unlabeled or partially labeled videos. We implement this learning objective in a unified form following the spirit of constrastive loss. Experiments on multiple object tracking datasets demonstrate that our method can effectively learning discriminative appearance embeddings in a semi-supervised fashion and outperform state of the art methods on representative benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا