ﻻ يوجد ملخص باللغة العربية
Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a models performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch. Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. OpenMatch achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learni
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor
Modern semi-supervised learning methods conventionally assume both labeled and unlabeled data have the same class distribution. However, unlabeled data may include out-of-class samples in practice; those that cannot have one-hot encoded labels from a
Pseudo-labeling (PL) and Data Augmentation-based Consistency Training (DACT) are two approaches widely used in Semi-Supervised Learning (SSL) methods. These methods exhibit great power in many machine learning tasks by utilizing unlabeled data for ef
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data. While the mainstream technique seeks to completely filter out the OOD samp