ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Domain-invariant Graph for Adaptive Semi-supervised Domain Adaptation with Few Labeled Source Samples

120   0   0.0 ( 0 )
 نشر من قبل Weifeng Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Domain adaptation aims to generalize a model from a source domain to tackle tasks in a related but different target domain. Traditional domain adaptation algorithms assume that enough labeled data, which are treated as the prior knowledge are available in the source domain. However, these algorithms will be infeasible when only a few labeled data exist in the source domain, and thus the performance decreases significantly. To address this challenge, we propose a Domain-invariant Graph Learning (DGL) approach for domain adaptation with only a few labeled source samples. Firstly, DGL introduces the Nystrom method to construct a plastic graph that shares similar geometric property as the target domain. And then, DGL flexibly employs the Nystrom approximation error to measure the divergence between plastic graph and source graph to formalize the distribution mismatch from the geometric perspective. Through minimizing the approximation error, DGL learns a domain-invariant geometric graph to bridge source and target domains. Finally, we integrate the learned domain-invariant graph with the semi-supervised learning and further propose an adaptive semi-supervised model to handle the cross-domain problems. The results of extensive experiments on popular datasets verify the superiority of DGL, especially when only a few labeled source samples are available.



قيم البحث

اقرأ أيضاً

Existing unsupervised domain adaptation methods aim to transfer knowledge from a label-rich source domain to an unlabeled target domain. However, obtaining labels for some source domains may be very expensive, making complete labeling as used in prio r work impractical. In this work, we investigate a new domain adaptation scenario with sparsely labeled source data, where only a few examples in the source domain have been labeled, while the target domain is unlabeled. We show that when labeled source examples are limited, existing methods often fail to learn discriminative features applicable for both source and target domains. We propose a novel Cross-Domain Self-supervised (CDS) learning approach for domain adaptation, which learns features that are not only domain-invariant but also class-discriminative. Our self-supervised learning method captures apparent visual similarity with in-domain self-supervision in a domain adaptive manner and performs cross-domain feature matching with across-domain self-supervision. In extensive experiments with three standard benchmark datasets, our method significantly boosts performance of target accuracy in the new target domain with few source labels and is even helpful on classical domain adaptation scenarios.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representati on for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
168 - Ning Ma , Jiajun Bu , Lixian Lu 2021
Domain Adaptation has been widely used to deal with the distribution shift in vision, language, multimedia etc. Most domain adaptation methods learn domain-invariant features with data from both domains available. However, such a strategy might be in feasible in practice when source data are unavailable due to data-privacy concerns. To address this issue, we propose a novel adaptation method via hypothesis transfer without accessing source data at adaptation stage. In order to fully use the limited target data, a semi-supervised mutual enhancement method is proposed, in which entropy minimization and augmented label propagation are used iteratively to perform inter-domain and intra-domain alignments. Compared with state-of-the-art methods, the experimental results on three public datasets demonstrate that our method gets up to 19.9% improvements on semi-supervised adaptation tasks.
Current adversarial adaptation methods attempt to align the cross-domain features, whereas two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain. To solve these cha llenges, we propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures (UODA). UODA consists of a generator and two classifiers (i.e., the source-scattering classifier and the target-clustering classifier), which are trained for contradictory purposes. The target-clustering classifier attempts to cluster the target features to improve intra-class density and enlarge inter-class divergence. Meanwhile, the source-scattering classifier is designed to scatter the source features to enhance the decision boundarys smoothness. Through the alternation of source-feature expansion and target-feature clustering procedures, the target features are well-enclosed within the dilated boundary of the corresponding source features. This strategy can make the cross-domain features to be precisely aligned against the source bias simultaneously. Moreover, to overcome the model collapse through training, we progressively update the measurement of features distance and their representation via an adversarial training paradigm. Extensive experiments on the benchmarks of DomainNet and Office-home datasets demonstrate the superiority of our approach over the state-of-the-art methods.
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source domain, making most previous works impractical. To cope with this problem, recent work performed instance-wise cross-domain self-supervised learning, followed by an additional fine-tuning stage. However, the instance-wise self-supervised learning only learns and aligns low-level discriminative features. In this paper, we propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA). PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains. Our framework captures category-wise semantic structures of the data by in-domain prototypical contrastive learning; and performs feature alignment through cross-domain prototypical self-supervision. Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively. Our project page is at http://xyue.io/pcs-fuda/index.html
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا