ﻻ يوجد ملخص باللغة العربية
The idea of a negative-pressure dark energy component in the Universe which causes an accelerated expansion in the late Universe has deep implications in models of field theory and general relativity. In this article, we survey the evidence for dark energy from cosmological observations which started from the compilation of distance-luminosity plots of Type Ia supernovae. This turned out to be consistent with the dark energy inferred from the CMB observations and large scale surveys and gave rise to the concordance $Lambda$CDM model of cosmology. In this article, we discuss the observational evidence for dark energy from Type Ia supernovae, CMB, galaxy surveys, observations of the Sunyaev-Zeldovich effect from clusters, and lensing by clusters. We also discuss the observational discrepancy in the values of $H_0$ and $sigma_8$ between CMB and large scale structures and discuss if varying dark energy models are able to resolve these tensions between different observations.
We study a two-parameter extension of the cosmological standard model $Lambda$CDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid $Delta N_mathrm{f
For dynamical dark energy with the barotropic equation of state we determine the mean values of parameters and their confidence ranges together with other cosmological parameters on the basis of different combined datasets. The used observations incl
A large number of cosmological parameters have been suggested for obtaining information on the nature of dark energy. In this work, we study the efficacy of these different parameters in discriminating theoretical models of dark energy, using both cu
Fast radio bursts (FRBs) are a mysterious astrophysical phenomenon of bright pulses emitted at radio frequencies, and they are expected to be frequently detected in the future. The dispersion measures of FRBs are related to cosmological parameters, t
We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressure