ﻻ يوجد ملخص باللغة العربية
For dynamical dark energy with the barotropic equation of state we determine the mean values of parameters and their confidence ranges together with other cosmological parameters on the basis of different combined datasets. The used observations include Planck data on CMB temperature anisotropy, E-mode polarization and lensing, BICEP2/Keck Array data on B-mode polarization, BAO from SDSS and 6dFGS, power spectrum of galaxies from WiggleZ, weak lensing from CFHTLenS and SN Ia data from the JLA compilation. We find that all but one mean models are phantom, mean values of the equation of state parameter at current epoch are close to $-1$ and constraints on the adiabatic sound speed of dark energy are weak. We investigate the effect of CMB polarization data on the dark energy parameters estimation. We discuss also which type of data on the large scale structure of the Universe allows to determine the dark energy parameters most precisely.
We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological ones using the combined datasets which include the CMB power spectra from WMAP
We combine recent measurements of Cosmic Microwave Background Anisotropies, Supernovae luminosity distances and Baryonic Acoustic Oscillations to derive constraints on the dark energy equation of state w in the redshift range 0<z<2, using a principal
We constrain the parameters of dynamical dark energy in the form of a classical scalar field with barotropic equation of state jointly with other cosmological parameters using various combined datasets including the CMB power spectra from WMAP7, the
Non-parametric reconstruction of the dark energy equation of state (EoS) aims to determine the EoS as a function of redshift without invoking any particular dark energy model, so that the resulting EoS can be free of model-induced biases or artifacts
The idea of a negative-pressure dark energy component in the Universe which causes an accelerated expansion in the late Universe has deep implications in models of field theory and general relativity. In this article, we survey the evidence for dark