ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperspectral Pansharpening Based on Improved Deep Image Prior and Residual Reconstruction

147   0   0.0 ( 0 )
 نشر من قبل Wele Gedara Chaminda Bandara
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution. Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets), which typically consist of three steps: (1) up-sampling the LR-HSI, (2) predicting the residual image via a ConvNet, and (3) obtaining the final fused HSI by adding the outputs from first and second steps. Recent methods have leveraged Deep Image Prior (DIP) to up-sample the LR-HSI due to its excellent ability to preserve both spatial and spectral information, without learning from large data sets. However, we observed that the quality of up-sampled HSIs can be further improved by introducing an additional spatial-domain constraint to the conventional spectral-domain energy function. We define our spatial-domain constraint as the $L_1$ distance between the predicted PAN image and the actual PAN image. To estimate the PAN image of the up-sampled HSI, we also propose a learnable spectral response function (SRF). Moreover, we noticed that the residual image between the up-sampled HSI and the reference HSI mainly consists of edge information and very fine structures. In order to accurately estimate fine information, we propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers. We perform experiments on three HSI datasets to demonstrate the superiority of our DIP-HyperKite over the state-of-the-art pansharpening methods. The deployment codes, pre-trained models, and final fusion outputs of our DIP-HyperKite and the methods used for the comparisons will be publicly made available at https://github.com/wgcban/DIP-HyperKite.git.



قيم البحث

اقرأ أيضاً

This paper presents a systematic study the effects of compression on hyperspectral pixel classification task. We use five dimensionality reduction methods -- PCA, KPCA, ICA, AE, and DAE -- to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used to perform pixel-based classifications. Pixel classification accuracies together with compression method, compression rates, and reconstruction errors provide a new lens to study the suitability of a compression method for the task of pixel-based classification. We use three high-resolution hyperspectral image datasets, representing three common landscape units (i.e. urban, transitional suburban, and forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability; however, when compression rate is more than 90% those methods showed lower classification scores. AE and DAE methods post better classification accuracy at 95% compression rate, however decreasing again at 97%, suggesting a sweet-spot at the 95% mark. Our results demonstrate that the choice of a compression method with the compression rate are important considerations when designing a hyperspectral image classification pipeline.
Convolutional Neural Networks (CNN) has been extensively studied for Hyperspectral Image Classification (HSIC) more specifically, 2D and 3D CNN models have proved highly efficient in exploiting the spatial and spectral information of Hyperspectral Im ages. However, 2D CNN only considers the spatial information and ignores the spectral information whereas 3D CNN jointly exploits spatial-spectral information at a high computational cost. Therefore, this work proposed a lightweight CNN (3D followed by 2D-CNN) model which significantly reduces the computational cost by distributing spatial-spectral feature extraction across a lighter model alongside a preprocessing that has been carried out to improve the classification results. Five benchmark Hyperspectral datasets (i.e., SalinasA, Salinas, Indian Pines, Pavia University, Pavia Center, and Botswana) are used for experimental evaluation. The experimental results show that the proposed pipeline outperformed in terms of generalization performance, statistical significance, and computational complexity, as compared to the state-of-the-art 2D/3D CNN models except commonly used computationally expensive design choices.
Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a m odel function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.
Recently deep learning-based image compression has shown the potential to outperform traditional codecs. However, most existing methods train multiple networks for multiple bit rates, which increase the implementation complexity. In this paper, we pr opose a new variable-rate image compression framework, which employs generalized octave convolutions (GoConv) and generalized octave transposed-convolutions (GoTConv) with built-in generalized divisive normalization (GDN) and inverse GDN (IGDN) layers. Novel GoConv- and GoTConv-based residual blocks are also developed in the encoder and decoder networks. Our scheme also uses a stochastic rounding-based scalar quantization. To further improve the performance, we encode the residual between the input and the reconstructed image from the decoder network as an enhancement layer. To enable a single model to operate with different bit rates and to learn multi-rate image features, a new objective function is introduced. Experimental results show that the proposed framework trained with variable-rate objective function outperforms the standard codecs such as H.265/HEVC-based BPG and state-of-the-art learning-based variable-rate methods.
151 - Xingjun Ma , Yuhao Niu , Lin Gu 2019
Deep neural networks (DNNs) have become popular for medical image analysis tasks like cancer diagnosis and lesion detection. However, a recent study demonstrates that medical deep learning systems can be compromised by carefully-engineered adversaria l examples/attacks with small imperceptible perturbations. This raises safety concerns about the deployment of these systems in clinical settings. In this paper, we provide a deeper understanding of adversarial examples in the context of medical images. We find that medical DNN models can be more vulnerable to adversarial attacks compared to models for natural images, according to two different viewpoints. Surprisingly, we also find that medical adversarial attacks can be easily detected, i.e., simple detectors can achieve over 98% detection AUC against state-of-the-art attacks, due to fundamental feature differences compared to normal examples. We believe these findings may be a useful basis to approach the design of more explainable and secure medical deep learning systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا