ﻻ يوجد ملخص باللغة العربية
Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.
We study the problem of learning to map, in an unsupervised way, between domains A and B, such that the samples b in B contain all the information that exists in samples a in A and some additional information. For example, ignoring occlusions, B can
This paper proposes a joint training method to learn both the variational auto-encoder (VAE) and the latent energy-based model (EBM). The joint training of VAE and latent EBM are based on an objective function that consists of three Kullback-Leibler
Novelty detection is a important research area which mainly solves the classification problem of inliers which usually consists of normal samples and outliers composed of abnormal samples. Auto-encoder is often used for novelty detection. However, th
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution. Recently proposed HS pansharpening methods
Image reconstruction and synthesis have witnessed remarkable progress thanks to the development of generative models. Nonetheless, gaps could still exist between the real and generated images, especially in the frequency domain. In this study, we sho