ﻻ يوجد ملخص باللغة العربية
We provide a proof of mean-field convergence of first-order dissipative or conservative dynamics of particles with Riesz-type singular interaction (the model interaction is an inverse power $s$ of the distance for any $0<s<d$) when assuming a certain regularity of the solutions to the limiting evolution equations. It relies on a modulated-energy approach, as introduced in previous works where it was restricted to the Coulomb and super-Coulombic cases. The method also allows us to incorporate multiplicative noise of transport type into the dynamics for the first time in this generality. It relies in extending functional inequalities of arXiv:1803.08345, arXiv:2011.12180, arXiv:2003.11704 to more general interactions, via a new, robust proof that exploits a certain commutator structure.
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be des
This paper addresses the mathematical models for the heat-conduction equations and the Navier-Stokes equations via fractional derivatives without singular kernel.
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fok
We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi
We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approach