ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of nodal solutions for Dirac equations with singular nonlinearities

228   0   0.0 ( 0 )
 نشر من قبل Loic Le Treust
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Loic Le Treust




اسأل ChatGPT حول البحث

We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi = 0 {equation*} where $Omega>m>0,$ $chi$ is compactly supported and [F(x) = {{array}{ll} p|x|^{p-1} & text{if} |x|>0 0 & text{if} x=0 {array}.] with $pin(0,1),$ under some restrictions on the parameters $p$ and $Omega.$ We study also the behavior of the solutions as $p$ tends to zero to establish the link between these equations and the M.I.T. bag model ones.



قيم البحث

اقرأ أيضاً

194 - Lei Zhang 2008
We consider a sequence of blowup solutions of a two dimensional, second order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci-Chen-Lin-Tarantello it is proved that the profile of the solutions differs from global solutions of a Liouville type equation only by a uniformly bounded term. The present paper improves their result and establishes an expansion of the solutions near the blowup points with a sharp error estimate.
71 - Wenjing Chen 2018
In this article, we establish the existence of solutions to the fractional $p-$Kirchhoff type equations with a generalized Choquard nonlinearities without assuming the Ambrosetti-Rabinowitz condition.
We develop a method for generating solutions to large classes of evolutionary partial differential systems with nonlocal nonlinearities. For arbitrary initial data, the solutions are generated from the corresponding linearized equations. The key is a Fredholm integral equation relating the linearized flow to an auxiliary linear flow. It is analogous to the Marchenko integral equation in integrable systems. We show explicitly how this can be achieved through several examples including reaction-diffusion systems with nonlocal quadratic nonlinearities and the nonlinear Schrodinger equation with a nonlocal cubic nonlinearity. In each case we demonstrate our approach with numerical simulations. We discuss the effectiveness of our approach and how it might be extended.
We consider a nonlinear Dirichlet problem driven by the $(p,q)$-Laplacian and with a reaction which is parametric and exhibits the combined effects of a singular term and of a superdiffusive one. We prove an existence and nonexistence result for posi tive solutions depending on the value of the parameter $lambda in overset{circ}{mathbb{R}}_+=(0,+infty)$.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t o a particular radial ansatz, which also allows to provide the exact asymptotic behavior of spinor components. Moreover, those solutions admit a variational characterization. We also indicate how the content of the present paper allows to extend our previous results for the massive case [5] to more general nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا