ترغب بنشر مسار تعليمي؟ اضغط هنا

On the size of chaos via Glauber calculus in the classical mean-field dynamics

93   0   0.0 ( 0 )
 نشر من قبل Mitia Duerinckx
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mitia Duerinckx




اسأل ChatGPT حول البحث

We consider a system of classical particles, interacting via a smooth, long-range potential, in the mean-field regime, and we optimally analyze the propagation of chaos in form of sharp estimates on many-particle correlation functions. While approaches based on the BBGKY hierarchy are doomed by uncontrolled losses of derivatives, we propose a novel non-hierarchical approach that focusses on the empirical measure of the system and exploits a Glauber type calculus with respect to initial data in form of higher-order Poincare inequalities for cumulants. This main result allows to rigorously truncate the BBGKY hierarchy to an arbitrary precision on the mean-field timescale, thus justifying the Bogolyubov corrections to mean field. As corollaries, we also deduce a quantitative central limit theorem for fluctuations of the empirical measure, and we partially justify the Lenard-Balescu limit for a spatially homogeneous system away from thermal equilibrium.

قيم البحث

اقرأ أيضاً

69 - Cyril Letrouit 2020
We establish two results concerning the Quantum Limits (QLs) of some sub-Laplacians. First, under a commutativity assumption on the vector fields involved in the definition of the sub-Laplacian, we prove that it is possible to split any QL into sever al pieces which can be studied separately, and which come from well-characterized parts of the associated sequence of eigenfunctions. Secondly, building upon this result, we classify all QLs of a particular family of sub-Laplacians defined on products of compact quotients of Heisenberg groups. We express the QLs through a disintegration of measure result which follows from a natural spectral decomposition of the sub-Laplacian in which harmonic oscillators appear.Both results are based on the construction of an adequate elliptic operator commuting with the sub-Laplacian, and on the associated joint spectral calculus. They illustrate the fact that, because of the possibly high degeneracy of the spectrum, the spectral theory of sub-Laplacians can be very rich.
175 - Lei Li , Jian-Guo Liu , Pu Yu 2018
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fok ker-Planck equation. By proving that the energy almost surely is bounded by the initial energy, we improve the regularity of the weak solutions. Moreover, by a natural assumption, we establish the weak strong uniqueness principle, which is closely related to the propagation of chaos.
91 - Denis Serre 2021
Divergence-free symmetric tensors seem ubiquitous in Mathematical Physics. We show that this structure occurs in models that are described by the so-called second variational principle, where the argument of the Lagrangian is a closed differential fo rm. Divergence-free tensors are nothing but the second form of the Euler--Lagrange equations. The symmetry is associated with the invariance of the Lagrangian density upon the action of some orthogonal group.
We prove an optimal $Omega(n^{-1})$ lower bound on the spectral gap of Glauber dynamics for anti-ferromagnetic two-spin systems with $n$ vertices in the tree uniqueness regime. This spectral gap holds for all, including unbounded, maximum degree $Del ta$. Consequently, we have the following mixing time bounds for the models satisfying the uniqueness condition with a slack $deltain(0,1)$: $bullet$ $C(delta) n^2log n$ mixing time for the hardcore model with fugacity $lambdale (1-delta)lambda_c(Delta)= (1-delta)frac{(Delta - 1)^{Delta - 1}}{(Delta - 2)^Delta}$; $bullet$ $C(delta) n^2$ mixing time for the Ising model with edge activity $betainleft[frac{Delta-2+delta}{Delta-delta},frac{Delta-delta}{Delta-2+delta}right]$; where the maximum degree $Delta$ may depend on the number of vertices $n$, and $C(delta)$ depends only on $delta$. Our proof is built upon the recently developed connections between the Glauber dynamics for spin systems and the high-dimensional expander walks. In particular, we prove a stronger notion of spectral independence, called the complete spectral independence, and use a novel Markov chain called the field dynamics to connect this stronger spectral independence to the rapid mixing of Glauber dynamics for all degrees.
The linearization of the classical Boussinesq system is solved explicitly in the case of nonzero boundary conditions on the half-line. The analysis relies on the unified transform method of Fokas and is performed in two different frameworks: (i) by e xploiting the recently introduced extension of Fokass method to systems of equations; (ii) by expressing the linearized classical Boussinesq system as a single, higher-order equation which is then solved via the usual version of the unified transform. The resulting formula provides a novel representation for the solution of the linearized classical Boussinesq system on the half-line. Moreover, thanks to the uniform convergence at the boundary, the novel formula is shown to satisfy the linearized classical Boussinesq system as well as the prescribed initial and boundary data via a direct calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا