ﻻ يوجد ملخص باللغة العربية
In this work, we show, for the well-studied problem of learning parity under noise, where a learner tries to learn $x=(x_1,ldots,x_n) in {0,1}^n$ from a stream of random linear equations over $mathrm{F}_2$ that are correct with probability $frac{1}{2}+varepsilon$ and flipped with probability $frac{1}{2}-varepsilon$, that any learning algorithm requires either a memory of size $Omega(n^2/varepsilon)$ or an exponential number of samples. In fact, we study memory-sample lower bounds for a large class of learning problems, as characterized by [GRT18], when the samples are noisy. A matrix $M: A times X rightarrow {-1,1}$ corresponds to the following learning problem with error parameter $varepsilon$: an unknown element $x in X$ is chosen uniformly at random. A learner tries to learn $x$ from a stream of samples, $(a_1, b_1), (a_2, b_2) ldots$, where for every $i$, $a_i in A$ is chosen uniformly at random and $b_i = M(a_i,x)$ with probability $1/2+varepsilon$ and $b_i = -M(a_i,x)$ with probability $1/2-varepsilon$ ($0<varepsilon< frac{1}{2}$). Assume that $k,ell, r$ are such that any submatrix of $M$ of at least $2^{-k} cdot |A|$ rows and at least $2^{-ell} cdot |X|$ columns, has a bias of at most $2^{-r}$. We show that any learning algorithm for the learning problem corresponding to $M$, with error, requires either a memory of size at least $Omegaleft(frac{k cdot ell}{varepsilon} right)$, or at least $2^{Omega(r)}$ samples. In particular, this shows that for a large class of learning problems, same as those in [GRT18], any learning algorithm requires either a memory of size at least $Omegaleft(frac{(log |X|) cdot (log |A|)}{varepsilon}right)$ or an exponential number of noisy samples. Our proof is based on adapting the arguments in [Raz17,GRT18] to the noisy case.
In this work, we initiate a formal study of probably approximately correct (PAC) learning under evasion attacks, where the adversarys goal is to emph{misclassify} the adversarially perturbed sample point $widetilde{x}$, i.e., $h(widetilde{x}) eq c(wi
We study the problem of high-dimensional linear regression in a robust model where an $epsilon$-fraction of the samples can be adversarially corrupted. We focus on the fundamental setting where the covariates of the uncorrupted samples are drawn from
Function inversion is the problem that given a random function $f: [M] to [N]$, we want to find pre-image of any image $f^{-1}(y)$ in time $T$. In this work, we revisit this problem under the preprocessing model where we can compute some auxiliary in
We prove lower bounds on the error probability of a quantum algorithm for searching through an unordered list of N items, as a function of the number T of queries it makes. In particular, if T=O(sqrt{N}) then the error is lower bounded by a constant.
Differentially private (DP) machine learning allows us to train models on private data while limiting data leakage. DP formalizes this data leakage through a cryptographic game, where an adversary must predict if a model was trained on a dataset D, o