ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Algorithms and Lower Bounds for Robust Linear Regression

138   0   0.0 ( 0 )
 نشر من قبل Ilias Diakonikolas
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of high-dimensional linear regression in a robust model where an $epsilon$-fraction of the samples can be adversarially corrupted. We focus on the fundamental setting where the covariates of the uncorrupted samples are drawn from a Gaussian distribution $mathcal{N}(0, Sigma)$ on $mathbb{R}^d$. We give nearly tight upper bounds and computational lower bounds for this problem. Specifically, our main contributions are as follows: For the case that the covariance matrix is known to be the identity, we give a sample near-optimal and computationally efficient algorithm that outputs a candidate hypothesis vector $widehat{beta}$ which approximates the unknown regression vector $beta$ within $ell_2$-norm $O(epsilon log(1/epsilon) sigma)$, where $sigma$ is the standard deviation of the random observation noise. An error of $Omega (epsilon sigma)$ is information-theoretically necessary, even with infinite sample size. Prior work gave an algorithm for this problem with sample complexity $tilde{Omega}(d^2/epsilon^2)$ whose error guarantee scales with the $ell_2$-norm of $beta$. For the case of unknown covariance, we show that we can efficiently achieve the same error guarantee as in the known covariance case using an additional $tilde{O}(d^2/epsilon^2)$ unlabeled examples. On the other hand, an error of $O(epsilon sigma)$ can be information-theoretically attained with $O(d/epsilon^2)$ samples. We prove a Statistical Query (SQ) lower bound providing evidence that this quadratic tradeoff in the sample size is inherent. More specifically, we show that any polynomial time SQ learning algorithm for robust linear regression (in Hubers contamination model) with estimation complexity $O(d^{2-c})$, where $c>0$ is an arbitrarily small constant, must incur an error of $Omega(sqrt{epsilon} sigma)$.


قيم البحث

اقرأ أيضاً

We give the first polynomial-time algorithm for performing linear or polynomial regression resilient to adversarial corruptions in both examples and labels. Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution D and subsequently corrupted on some fraction of points, our algorithm outputs a linear function whose squared error is close to the squared error of the best-fitting linear function with respect to D, assuming that the marginal distribution of D over the input space is emph{certifiably hypercontractive}. This natural property is satisfied by many well-studied distributions such as Gaussian, strongly log-concave distributions and, uniform distribution on the hypercube among others. We also give a simple statistical lower bound showing that some distributional assumption is necessary to succeed in this setting. These results are the first of their kind and were not known to be even information-theoretically possible prior to our work. Our approach is based on the sum-of-squares (SoS) method and is inspired by the recent applications of the method for parameter recovery problems in unsupervised learning. Our algorithm can be seen as a natural convex relaxation of the following conceptually simple non-convex optimization problem: find a linear function and a large subset of the input corrupted sample such that the least squares loss of the function over the subset is minimized over all possible large subsets.
In this work, we initiate a formal study of probably approximately correct (PAC) learning under evasion attacks, where the adversarys goal is to emph{misclassify} the adversarially perturbed sample point $widetilde{x}$, i.e., $h(widetilde{x}) eq c(wi detilde{x})$, where $c$ is the ground truth concept and $h$ is the learned hypothesis. Previous work on PAC learning of adversarial examples have all modeled adversarial examples as corrupted inputs in which the goal of the adversary is to achieve $h(widetilde{x}) eq c(x)$, where $x$ is the original untampered instance. These two definitions of adversarial risk coincide for many natural distributions, such as images, but are incomparable in general. We first prove that for many theoretically natural input spaces of high dimension $n$ (e.g., isotropic Gaussian in dimension $n$ under $ell_2$ perturbations), if the adversary is allowed to apply up to a sublinear $o(||x||)$ amount of perturbations on the test instances, PAC learning requires sample complexity that is exponential in $n$. This is in contrast with results proved using the corrupted-input framework, in which the sample complexity of robust learning is only polynomially more. We then formalize hybrid attacks in which the evasion attack is preceded by a poisoning attack. This is perhaps reminiscent of trapdoor attacks in which a poisoning phase is involved as well, but the evasion phase here uses the error-region definition of risk that aims at misclassifying the perturbed instances. In this case, we show PAC learning is sometimes impossible all together, even when it is possible without the attack (e.g., due to the bounded VC dimension).
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with $mn$ when $mapprox n$, which is the same as classical.
143 - Kaiyi Ji , Yingbin Liang 2021
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular algorithms, it is still unclear h ow much further these convergence rates can be improved. In this paper, we address this fundamental question from two perspectives. First, we provide the first-known lower complexity bounds of $widetilde{Omega}(frac{1}{sqrt{mu_x}mu_y})$ and $widetilde Omegabig(frac{1}{sqrt{epsilon}}min{frac{1}{mu_y},frac{1}{sqrt{epsilon^{3}}}}big)$ respectively for strongly-convex-strongly-convex and convex-strongly-convex bilevel optimizations. Second, we propose an accelerated bilevel optimizer named AccBiO, for which we provide the first-known complexity bounds without the gradient boundedness assumption (which was made in existing analyses) under the two aforementioned geometries. We also provide significantly tighter upper bounds than the existing complexity when the bounded gradient assumption does hold. We show that AccBiO achieves the optimal results (i.e., the upper and lower bounds match up to logarithmic factors) when the inner-level problem takes a quadratic form with a constant-level condition number. Interestingly, our lower bounds under both geometries are larger than the corresponding optimal complexities of minimax optimization, establishing that bilevel optimization is provably more challenging than minimax optimization.
89 - Sepehr Assadi , Ran Raz 2020
We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several o ther fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out $o(n^{7/6})$ space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا