ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison of maximum likelihood mapping methods for gravitational-wave backgrounds

79   0   0.0 ( 0 )
 نشر من قبل Arianna Renzini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection of a stochastic background of gravitational waves is likely to occur in the next few years. Beyond searches for the isotropic component of SGWBs, there have been various mapping methods proposed to target anisotropic backgrounds. Some of these methods have been applied to data taken by the Laser Interferometer Gravitational-wave Observatories (LIGO) and Virgo. Specifically, these directional searches have focused on mapping the intensity of the signal on the sky via maximum likelihood solutions. We compare this intensity mapping approach to a previously proposed, but never employed, amplitude-phase mapping method to understand whether this latter approach may be employed in future searches. We build up our understanding of the differences between these two approaches by analysing simple toy models of time-stream data, and run mock-data mapping tests for the two methods. We find that the amplitude-phase method is only applicable to the case of a background which is phase-coherent on large scales or, at the very least, has an intrinsic coherence scale that is larger than that of the detector. Otherwise, the amplitude-phase mapping method leads to a loss of overall information, with respect to both phase and amplitude. Since we do not expect these phase-coherent properties to hold for any of the gravitational-wave background signals we hope to detect in the near future, we conclude that intensity mapping is the preferred method for such backgrounds.

قيم البحث

اقرأ أيضاً

We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.
Given the recent detection of gravitational waves from individual sources it is almost a certainty that some form of background of gravitational waves will be detected in future. The most promising candidate for such a detection are backgrounds made up of incoherent superposition of the signal of unresolved astrophysical or, backgrounds sourced by earlier cosmological events. Such backgrounds will also contain anisotropies about an average value. The information contained in the background level and any anisotropies will be extremely valuable as an astrophysical and cosmological probe. As such, the ability to reconstruct sky maps of the signal will become important as the sensitivity increases. We build and test a pixel--based, maximum--likelihood Gravitational Wave Background (GWB) map-maker that uses the cross-correlation of sets of generalised baselines as input. The resulting maps are a representation of the GWB power, or strain intensity on the sky. We test the algorithm by reconstructing known input maps with different baseline configurations. We also apply the map-maker to a subset of the Advance LIGO data.
We make forecasts for the impact a future midband space-based gravitational wave experiment, most sensitive to $10^{-2}- 10$ Hz, could have on potential detections of cosmological stochastic gravitational wave backgrounds (SGWBs). Specific proposed m idband experiments considered are TianGo, B-DECIGO and AEDGE. We propose a combined power-law integrated sensitivity (CPLS) curve combining GW experiments over different frequency bands, which shows the midband improves sensitivity to SGWBs by up to two orders of magnitude at $10^{-2} - 10$ Hz. We consider GW emission from cosmic strings and phase transitions as benchmark examples of cosmological SGWBs. We explicitly model various astrophysical SGWB sources, most importantly from unresolved black hole mergers. Using Markov Chain Monte Carlo, we demonstrated that midband experiments can, when combined with LIGO A+ and LISA, significantly improve sensitivities to cosmological SGWBs and better separate them from astrophysical SGWBs. In particular, we forecast that a midband experiment improves sensitivity to cosmic string tension $Gmu$ by up to a factor of $10$, driven by improved component separation from astrophysical sources. For phase transitions, a midband experiment can detect signals peaking at $0.1 - 1$ Hz, which for our fiducial model corresponds to early Universe temperatures of $T_*sim 10^4 - 10^6$ GeV, generally beyond the reach of LIGO and LISA. The midband closes an energy gap and better captures characteristic spectral shape information. It thus substantially improves measurement of the properties of phase transitions at lower energies of $T_* sim O(10^3)$ GeV, potentially relevant to new physics at the electroweak scale, whereas in this energy range LISA alone will detect an excess but not effectively measure the phase transition parameters. Our modelling code and chains are publicly available.
We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptio ns about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarised and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.
The search procedure for burst gravitational waves has been studied using 24 hours of simulated data in a network of three interferometers (Hanford 4-km, Livingston 4-km and Virgo 3-km are the example interferometers). Several methods to detect burst events developed in the LIGO Scientific Collaboration (LSC) and Virgo collaboration have been studied and compared. We have performed coincidence analysis of the triggers obtained in the different interferometers with and without simulated signals added to the data. The benefits of having multiple interferometers of similar sensitivity are demonstrated by comparing the detection performance of the joint coincidence analysis with LSC and Virgo only burst searches. Adding Virgo to the LIGO detector network can increase by 50% the detection efficiency for this search. Another advantage of a joint LIGO-Virgo network is the ability to reconstruct the source sky position. The reconstruction accuracy depends on the timing measurement accuracy of the events in each interferometer, and is displayed in this paper with a fixed source position example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا