ﻻ يوجد ملخص باللغة العربية
Given the recent detection of gravitational waves from individual sources it is almost a certainty that some form of background of gravitational waves will be detected in future. The most promising candidate for such a detection are backgrounds made up of incoherent superposition of the signal of unresolved astrophysical or, backgrounds sourced by earlier cosmological events. Such backgrounds will also contain anisotropies about an average value. The information contained in the background level and any anisotropies will be extremely valuable as an astrophysical and cosmological probe. As such, the ability to reconstruct sky maps of the signal will become important as the sensitivity increases. We build and test a pixel--based, maximum--likelihood Gravitational Wave Background (GWB) map-maker that uses the cross-correlation of sets of generalised baselines as input. The resulting maps are a representation of the GWB power, or strain intensity on the sky. We test the algorithm by reconstructing known input maps with different baseline configurations. We also apply the map-maker to a subset of the Advance LIGO data.
Within the next several years, pulsar-timing array programs will likely usher in the next era of gravitational-wave astronomy through the detection of a stochastic background of nanohertz-frequency gravitational waves, originating from a cosmological
We present results from searches of recent LIGO and Virgo data for continuous gravitational wave signals (CW) from spinning neutron stars and for a stochastic gravitational wave background (SGWB). The first part of the talk is devoted to CW analysis
Detection of a stochastic background of gravitational waves is likely to occur in the next few years. Beyond searches for the isotropic component of SGWBs, there have been various mapping methods proposed to target anisotropic backgrounds. Some of th
Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coales
The gravitational waveform of a merging stellar-mass binary is described at leading order by a quadrupolar mode. However, the complete waveform includes higher-order modes, which encode valuable information not accessible from the leading-order mode