ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection methods for stochastic gravitational-wave backgrounds: a unified treatment

117   0   0.0 ( 0 )
 نشر من قبل Joseph Romano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers, spacecraft Doppler tracking, and pulsar timing arrays; and we allow for anisotropy, non-Gaussianity, and non-standard polarization states. Our focus is on relevant data analysis issues, and not on the particular astrophysical or early Universe sources that might give rise to such backgrounds. We provide a unified treatment of these searches at the level of detector response functions, detection sensitivity curves, and, more generally, at the level of the likelihood function, since the choice of signal and noise models and prior probability distributions are actually what define the search. Pedagogical examples are given whenever possible to compare and contrast different approaches. We have tried to make the article as self-contained and comprehensive as possible, targeting graduate students and new researchers looking to enter this field.

قيم البحث

اقرأ أيضاً

Detection of a stochastic background of gravitational waves is likely to occur in the next few years. Beyond searches for the isotropic component of SGWBs, there have been various mapping methods proposed to target anisotropic backgrounds. Some of th ese methods have been applied to data taken by the Laser Interferometer Gravitational-wave Observatories (LIGO) and Virgo. Specifically, these directional searches have focused on mapping the intensity of the signal on the sky via maximum likelihood solutions. We compare this intensity mapping approach to a previously proposed, but never employed, amplitude-phase mapping method to understand whether this latter approach may be employed in future searches. We build up our understanding of the differences between these two approaches by analysing simple toy models of time-stream data, and run mock-data mapping tests for the two methods. We find that the amplitude-phase method is only applicable to the case of a background which is phase-coherent on large scales or, at the very least, has an intrinsic coherence scale that is larger than that of the detector. Otherwise, the amplitude-phase mapping method leads to a loss of overall information, with respect to both phase and amplitude. Since we do not expect these phase-coherent properties to hold for any of the gravitational-wave background signals we hope to detect in the near future, we conclude that intensity mapping is the preferred method for such backgrounds.
We make forecasts for the impact a future midband space-based gravitational wave experiment, most sensitive to $10^{-2}- 10$ Hz, could have on potential detections of cosmological stochastic gravitational wave backgrounds (SGWBs). Specific proposed m idband experiments considered are TianGo, B-DECIGO and AEDGE. We propose a combined power-law integrated sensitivity (CPLS) curve combining GW experiments over different frequency bands, which shows the midband improves sensitivity to SGWBs by up to two orders of magnitude at $10^{-2} - 10$ Hz. We consider GW emission from cosmic strings and phase transitions as benchmark examples of cosmological SGWBs. We explicitly model various astrophysical SGWB sources, most importantly from unresolved black hole mergers. Using Markov Chain Monte Carlo, we demonstrated that midband experiments can, when combined with LIGO A+ and LISA, significantly improve sensitivities to cosmological SGWBs and better separate them from astrophysical SGWBs. In particular, we forecast that a midband experiment improves sensitivity to cosmic string tension $Gmu$ by up to a factor of $10$, driven by improved component separation from astrophysical sources. For phase transitions, a midband experiment can detect signals peaking at $0.1 - 1$ Hz, which for our fiducial model corresponds to early Universe temperatures of $T_*sim 10^4 - 10^6$ GeV, generally beyond the reach of LIGO and LISA. The midband closes an energy gap and better captures characteristic spectral shape information. It thus substantially improves measurement of the properties of phase transitions at lower energies of $T_* sim O(10^3)$ GeV, potentially relevant to new physics at the electroweak scale, whereas in this energy range LISA alone will detect an excess but not effectively measure the phase transition parameters. Our modelling code and chains are publicly available.
In its observation band, the Laser Interferometer Space Antenna (LISA) will simultaneously observe stochastic gravitational-wave background (SGWB) signals of different origins; orbitally modulated waveforms from galactic white dwarf binaries, a binar y black hole produced background, and possibly a cosmologically produced SGWB. We simulate the emission of gravitational waves from galactic white dwarf binaries based on the Lamberts cite{Lamberts} distributions and determine a complex waveform from the galactic foreground. We generate the modulated galactic signal detected by LISA due to its orbital motion, and present a data analysis strategy to address it. The Fisher Information and Markov Chain Monte Carlo methods give an estimate of the LISA noise and parameters for the different signal sources. We simultaneously estimate the galactic foreground, the astrophysical and cosmological backgrounds, and estimate detection limits for the future LISA observation of the SGWB in the spectral domain with the 3 LISA channels $ A $, $ E $ and $ T $. In the context of the expected astrophysical background and a galactic foreground, a cosmological background energy density of about $ Omega_{GW,Cosmo} approx 8 times 10^{-13} $ could be detected by LISA with our spectral separation strategy.
The recent Advanced LIGO and Advanced Virgo joint observing runs have not claimed a stochastic gravitational-wave background detection, but one expects this to change as the sensitivity of the detectors improves. The challenge of claiming a true dete ction will be immediately succeeded by the difficulty of relating the signal to the sources that contribute to it. In this paper, we consider backgrounds that comprise compact binary coalescences and additional cosmological sources, and we set simultaneous upper limits on these backgrounds. We find that the Advanced LIGO, Advanced Virgo network, operating at design sensitivity, will not allow for separation of the sources we consider. Third generation detectors, sensitive to most individual compact binary mergers, can reduce the astrophysical signal via subtraction of individual sources, and potentially reveal a cosmological background. Our Bayesian analysis shows that, assuming a detector network containing Cosmic Explorer and Einstein Telescope and reasonable levels of individual source subtraction, we can detect cosmological signals $Omega_{rm{CS}} (25,rm{Hz})=4.5 times 10^{-13}$ for cosmic strings, and $Omega_{rm BPL}(25,rm{Hz})= 2.2 times 10^{-13}$ for a broken power law model of an early universe phase transition.
We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptio ns about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarised and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا