ﻻ يوجد ملخص باللغة العربية
We cast the quantum chemistry problem of computing bound states as that of solving a set of auxiliary eigenvalue problems for a family of parameterized compact integral operators. The compactness of operators assures that their spectrum is discrete and bounded with the only possible accumulation point at zero. We show that, by changing the parameter, we can always find the bound states, i.e., the eigenfunctions that satisfy the original equations and are normalizable. While for the non-relativistic equations these properties may not be surprising, it is remarkable that the same holds for the relativistic equations where the spectrum of the original relativistic operators does not have a lower bound. We demonstrate that starting from an arbitrary initialization of the iteration leads to the solution, as dictated by the properties of compact operators.
We prove the existence of infinitely many non square-integrable stationary solutions for a family of massless Dirac equations in 2D. They appear as effective equations in two dimensional honeycomb structures. We give a direct existence proof thanks t
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the sc
We consider the stability problem for standing waves of nonlinear Dirac models. Under a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same time orbital and asymptotic stability. We are not able t
In their reply arXiv:1408.2230, the authors corrected some inappropriate sentences and clarified misleading descriptions in their original manuscript arXiv:1407.5194v1.