ترغب بنشر مسار تعليمي؟ اضغط هنا

On the time evolution of Wigner measures for Schrodinger equations

348   0   0.0 ( 0 )
 نشر من قبل Remi Carles
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Remi Carles




اسأل ChatGPT حول البحث

In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schrodinger equations, we list some examples where Wigner measures cannot be a good tool to describe high frequency limits. Typically, the Wigner measures may not capture effects which are not negligible at the pointwise level, or the propagation of Wigner measures may be an ill-posed problem. In the latter situation, two families of functions may have the same Wigner measures at some initial time, but different Wigner measures for a larger time. In the case of systems, this difficulty can partially be avoided by considering more refined Wigner measures such as two-scale Wigner measures; however, we give examples of situations where this quadratic approach fails.



قيم البحث

اقرأ أيضاً

139 - Thomas Alazard 2007
We consider the small time semi-classical limit for nonlinear Schrodinger equations with defocusing, smooth, nonlinearity. For a super-cubic nonlinearity, the limiting system is not directly hyperbolic, due to the presence of vacuum. To overcome this issue, we introduce new unknown functions, which are defined nonlinearly in terms of the wave function itself. This approach provides a local version of the modulated energy functional introduced by Y.Brenier. The system we obtain is hyperbolic symmetric, and the justification of WKB analysis follows.
In this paper, we consider the long time dynamics of radially symmetric solutions of nonlinear Schrodinger equations (NLS) having a minimal mass ground state. In particular, we show that there exist solutions with initial data near the minimal mass g round state that oscillate for long time. More precisely, we introduce a coordinate defined near the minimal mass ground state which consists of finite and infinite dimensional part associated to the discrete and continuous part of the linearized operator. Then, we show that the finite dimensional part, two dimensional, approximately obeys Newtons equation of motion for a particle in an anharmonic potential well. Showing that the infinite dimensional part is well separated from the finite dimensional part, we will have long time oscillation.
154 - Pedro Caro , Ting Zhou 2012
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity and the conductivity, are described by continuously differentiable functions.
We show that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the scattering matrix is in the unital Wiener algebra of functions with integrable Fourier transforms. Then we use this to derive dispersion est imates for solutions of the associated Schrodinger and Klein-Gordon equations. In particular, we remove the additional decay conditions in the case where a resonance is present at the edge of the continuous spectrum.
346 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا