ﻻ يوجد ملخص باللغة العربية
Rap generation, which aims to produce lyrics and corresponding singing beats, needs to model both rhymes and rhythms. Previous works for rap generation focused on rhyming lyrics but ignored rhythmic beats, which are important for rap performance. In this paper, we develop DeepRapper, a Transformer-based rap generation system that can model both rhymes and rhythms. Since there is no available rap dataset with rhythmic beats, we develop a data mining pipeline to collect a large-scale rap dataset, which includes a large number of rap songs with aligned lyrics and rhythmic beats. Second, we design a Transformer-based autoregressive language model which carefully models rhymes and rhythms. Specifically, we generate lyrics in the reverse order with rhyme representation and constraint for rhyme enhancement and insert a beat symbol into lyrics for rhythm/beat modeling. To our knowledge, DeepRapper is the first system to generate rap with both rhymes and rhythms. Both objective and subjective evaluations demonstrate that DeepRapper generates creative and high-quality raps with rhymes and rhythms. Code will be released on GitHub.
In this paper, we propose NU-GAN, a new method for resampling audio from lower to higher sampling rates (upsampling). Audio upsampling is an important problem since productionizing generative speech technology requires operating at high sampling rate
GAN-based neural vocoders, such as Parallel WaveGAN and MelGAN have attracted great interest due to their lightweight and parallel structures, enabling them to generate high fidelity waveform in a real-time manner. In this paper, inspired by Relativi
In this paper we propose a novel model for unconditional audio generation based on generating one audio sample at a time. We show that our model, which profits from combining memory-less modules, namely autoregressive multilayer perceptrons, and stat
We present Deep Voice 3, a fully-convolutional attention-based neural text-to-speech (TTS) system. Deep Voice 3 matches state-of-the-art neural speech synthesis systems in naturalness while training ten times faster. We scale Deep Voice 3 to data set
Natural language processing methods have been applied in a variety of music studies, drawing the connection between music and language. In this paper, we expand those approaches by investigating textit{chord embeddings}, which we apply in two case st