ﻻ يوجد ملخص باللغة العربية
GAN-based neural vocoders, such as Parallel WaveGAN and MelGAN have attracted great interest due to their lightweight and parallel structures, enabling them to generate high fidelity waveform in a real-time manner. In this paper, inspired by Relativistic GAN, we introduce a novel variant of the LSGAN framework under the context of waveform synthesis, named Pointwise Relativistic LSGAN (PRLSGAN). In this approach, we take the truism score distribution into consideration and combine the original MSE loss with the proposed pointwise relative discrepancy loss to increase the difficulty of the generator to fool the discriminator, leading to improved generation quality. Moreover, PRLSGAN is a general-purposed framework that can be combined with any GAN-based neural vocoder to enhance its generation quality. Experiments have shown a consistent performance boost based on Parallel WaveGAN and MelGAN, demonstrating the effectiveness and strong generalization ability of our proposed PRLSGAN neural vocoders.
In this paper, we propose NU-GAN, a new method for resampling audio from lower to higher sampling rates (upsampling). Audio upsampling is an important problem since productionizing generative speech technology requires operating at high sampling rate
Recent studies have shown that neural vocoders based on generative adversarial network (GAN) can generate audios with high quality. While GAN based neural vocoders have shown to be computationally much more efficient than those based on autoregressiv
Influenced by the field of Computer Vision, Generative Adversarial Networks (GANs) are often adopted for the audio domain using fixed-size two-dimensional spectrogram representations as the image data. However, in the (musical) audio domain, it is of
Recommender systems are popular tools for information retrieval tasks on a large variety of web applications and personalized products. In this work, we propose a Generative Adversarial Network based recommendation framework using a positive-unlabele
We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained