ﻻ يوجد ملخص باللغة العربية
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting. Though several methods have demonstrated impressive transferability of untargeted adversarial examples, targeted adversarial transferability is still challenging. The existing methods either have low targeted transferability or sacrifice computational efficiency. In this paper, we develop a simple yet practical framework to efficiently craft targeted transfer-based adversarial examples. Specifically, we propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes by simply altering the class embedding and share a single backbone. Extensive experiments demonstrate that our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods -- it reaches an average success rate of 29.6% against six diverse models based only on one substitute white-box model in the standard testing of NeurIPS 2017 competition, which outperforms the state-of-the-art gradient-based attack methods (with an average success rate of $<$2%) by a large margin. Moreover, the proposed method is also more efficient beyond an order of magnitude than gradient-based methods.
The vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community. In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs. We revis
Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, for real-time generation tasks, d
Adversarial examples (AEs) are images that can mislead deep neural network (DNN) classifiers via introducing slight perturbations into original images. This security vulnerability has led to vast research in recent years because it can introduce real
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has bee
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they maintain their effectiveness even against other models. With great efforts delved into the transferability of