ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Adversarial Examples via Invertible Neural Networks

82   0   0.0 ( 0 )
 نشر من قبل Saurabh Bagchi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial examples (AEs) are images that can mislead deep neural network (DNN) classifiers via introducing slight perturbations into original images. This security vulnerability has led to vast research in recent years because it can introduce real-world threats into systems that rely on neural networks. Yet, a deep understanding of the characteristics of adversarial examples has remained elusive. We propose a new way of achieving such understanding through a recent development, namely, invertible neural models with Lipschitz continuous mapping functions from the input to the output. With the ability to invert any latent representation back to its corresponding input image, we can investigate adversarial examples at a deeper level and disentangle the adversarial examples latent representation. Given this new perspective, we propose a fast latent space adversarial example generation method that could accelerate adversarial training. Moreover, this new perspective could contribute to new ways of adversarial example detection.



قيم البحث

اقرأ أيضاً

Despite being popularly used in many applications, neural network models have been found to be vulnerable to adversarial examples, i.e., carefully crafted examples aiming to mislead machine learning models. Adversarial examples can pose potential ris ks on safety and security critical applications. However, existing defense approaches are still vulnerable to attacks, especially in a white-box attack scenario. To address this issue, we propose a new defense approach, named MulDef, based on robustness diversity. Our approach consists of (1) a general defense framework based on multiple models and (2) a technique for generating these multiple models to achieve high defense capability. In particular, given a target model, our framework includes multiple models (constructed from the target model) to form a model family. The model family is designed to achieve robustness diversity (i.e., an adversarial example successfully attacking one model cannot succeed in attacking other models in the family). At runtime, a model is randomly selected from the family to be applied on each input example. Our general framework can inspire rich future research to construct a desirable model family achieving higher robustness diversity. Our evaluation results show that MulDef (with only up to 5 models in the family) can substantially improve the target models accuracy on adversarial examples by 22-74% in a white-box attack scenario, while maintaining similar accuracy on legitimate examples.
Deep neural networks are vulnerable to adversarial examples, which dramatically alter model output using small input changes. We propose Neural Fingerprinting, a simple, yet effective method to detect adversarial examples by verifying whether model b ehavior is consistent with a set of secret fingerprints, inspired by the use of biometric and cryptographic signatures. The benefits of our method are that 1) it is fast, 2) it is prohibitively expensive for an attacker to reverse-engineer which fingerprints were used, and 3) it does not assume knowledge of the adversary. In this work, we pose a formal framework to analyze fingerprints under various threat models, and characterize Neural Fingerprinting for linear models. For complex neural networks, we empirically demonstrate that Neural Fingerprinting significantly improves on state-of-the-art detection mechanisms by detecting the strongest known adversarial attacks with 98-100% AUC-ROC scores on the MNIST, CIFAR-10 and MiniImagenet (20 classes) datasets. In particular, the detection accuracy of Neural Fingerprinting generalizes well to unseen test-data under various black- and whitebox threat models, and is robust over a wide range of hyperparameters and choices of fingerprints.
Daniely and Schacham recently showed that gradient descent finds adversarial examples on random undercomplete two-layers ReLU neural networks. The term undercomplete refers to the fact that their proof only holds when the number of neurons is a vanis hing fraction of the ambient dimension. We extend their result to the overcomplete case, where the number of neurons is larger than the dimension (yet also subexponential in the dimension). In fact we prove that a single step of gradient descent suffices. We also show this result for any subexponential width random neural network with smooth activation function.
Audio processing models based on deep neural networks are susceptible to adversarial attacks even when the adversarial audio waveform is 99.9% similar to a benign sample. Given the wide application of DNN-based audio recognition systems, detecting th e presence of adversarial examples is of high practical relevance. By applying anomalous pattern detection techniques in the activation space of these models, we show that 2 of the recent and current state-of-the-art adversarial attacks on audio processing systems systematically lead to higher-than-expected activation at some subset of nodes and we can detect these with up to an AUC of 0.98 with no degradation in performance on benign samples.
Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an optimal adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNNs internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا