ترغب بنشر مسار تعليمي؟ اضغط هنا

Depth-based Outlier Detection for Grouped Smart Meters: a Functional Data Analysis Toolbox

109   0   0.0 ( 0 )
 نشر من قبل Antonio Elias
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive time series often have common daily patterns that are repeated between similar days or seasons and shared between grouped meters. Within this context, we propose a method to highlight individuals with abnormal daily dependency patterns, which we term evolution outliers. To this end, we approach the problem from the standpoint of Functional Data Analysis (FDA), by treating each daily record as a function or curve. We then focus on the morphological aspects of the observed curves, such as daily magnitude, daily shape, derivatives, and inter-day evolution. The proposed method for evolution outliers relies on the concept of functional depth, which has been a cornerstone in the literature of FDA to build shape and magnitude outlier detection methods. In conjunction with our evolution outlier proposal, these methods provide an outlier detection toolbox for smart meter data that covers a wide palette of functional outliers classes. We illustrate the outlier identification ability of this toolbox using actual smart metering data corresponding to photovoltaic energy generation and circuit voltage records.


قيم البحث

اقرأ أيضاً

116 - Jingjing Yang , Peng Ren 2016
We provide a MATLAB toolbox, BFDA, that implements a Bayesian hierarchical model to smooth multiple functional data with the assumptions of the same underlying Gaussian process distribution, a Gaussian process prior for the mean function, and an Inve rse-Wishart process prior for the covariance function. This model-based approach can borrow strength from all functional data to increase the smoothing accuracy, as well as estimate the mean-covariance functions simultaneously. An option of approximating the Bayesian inference process using cubic B-spline basis functions is integrated in BFDA, which allows for efficiently dealing with high-dimensional functional data. Examples of using BFDA in various scenarios and conducting follow-up functional regression are provided. The advantages of BFDA include: (1) Simultaneously smooths multiple functional data and estimates the mean-covariance functions in a nonparametric way; (2) flexibly deals with sparse and high-dimensional functional data with stationary and nonstationary covariance functions, and without the requirement of common observation grids; (3) provides accurately smoothed functional data for follow-up analysis.
We propose an alternative to $k$-nearest neighbors for functional data whereby the approximating neighboring curves are piecewise functions built from a functional sample. Using a locally defined distance function that satisfies stabilization criteri a, we establish pointwise and global approximation results in function spaces when the number of data curves is large enough. We exploit this feature to develop the asymptotic theory when a finite number of curves is observed at time-points given by an i.i.d. sample whose cardinality increases up to infinity. We use these results to investigate the problem of estimating unobserved segments of a partially observed functional data sample as well as to study the problem of functional classification and outlier detection. For such problems, our methods are competitive with and sometimes superior to benchmark predictions in the field.
The problem of estimating missing fragments of curves from a functional sample has been widely considered in the literature. However, a majority of the reconstruction methods rely on estimating the covariance matrix or the components of its eigendeco mposition, a task that may be difficult. In particular, the accuracy of the estimation might be affected by the complexity of the covariance function and the poor availability of complete functional data. We introduce a non-parametric alternative based on a novel concept of depth for partially observed functional data. Our simulations point out that the available methods are unbeatable when the covariance function is stationary, and there is a large proportion of complete data. However, our approach was superior when considering non-stationary covariance functions or when the proportion of complete functions is scarce. Moreover, even in the most severe case of having all the functions incomplete, our method performs well meanwhile the competitors are unable. The methodology is illustrated with two real data sets: the Spanish daily temperatures observed in different weather stations and the age-specific mortality by prefectures in Japan.
The selection of grouped variables using the random forest algorithm is considered. First a new importance measure adapted for groups of variables is proposed. Theoretical insights into this criterion are given for additive regression models. Second, an original method for selecting functional variables based on the grouped variable importance measure is developed. Using a wavelet basis, it is proposed to regroup all of the wavelet coefficients for a given functional variable and use a wrapper selection algorithm with these groups. Various other groupings which take advantage of the frequency and time localization of the wavelet basis are proposed. An extensive simulation study is performed to illustrate the use of the grouped importance measure in this context. The method is applied to a real life problem coming from aviation safety.
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influ ential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا