ﻻ يوجد ملخص باللغة العربية
The problem of estimating missing fragments of curves from a functional sample has been widely considered in the literature. However, a majority of the reconstruction methods rely on estimating the covariance matrix or the components of its eigendecomposition, a task that may be difficult. In particular, the accuracy of the estimation might be affected by the complexity of the covariance function and the poor availability of complete functional data. We introduce a non-parametric alternative based on a novel concept of depth for partially observed functional data. Our simulations point out that the available methods are unbeatable when the covariance function is stationary, and there is a large proportion of complete data. However, our approach was superior when considering non-stationary covariance functions or when the proportion of complete functions is scarce. Moreover, even in the most severe case of having all the functions incomplete, our method performs well meanwhile the competitors are unable. The methodology is illustrated with two real data sets: the Spanish daily temperatures observed in different weather stations and the age-specific mortality by prefectures in Japan.
A data depth measures the centrality of a point with respect to an empirical distribution. Postulates are formulated, which a depth for functional data should satisfy, and a general approach is proposed to construct multivariate data depths in Banach
Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive time series often have common daily patterns that are repeated between similar days or seasons and shared between grouped mete
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariate
We develop a novel exploratory tool for non-Euclidean object data based on data depth, extending the celebrated Tukeys depth for Euclidean data. The proposed metric halfspace depth, applicable to data objects in a general metric space, assigns to dat
Bayesian networks are a versatile and powerful tool to model complex phenomena and the interplay of their components in a probabilistically principled way. Moving beyond the comparatively simple case of completely observed, static data, which has rec