ﻻ يوجد ملخص باللغة العربية
We propose an alternative to $k$-nearest neighbors for functional data whereby the approximating neighboring curves are piecewise functions built from a functional sample. Using a locally defined distance function that satisfies stabilization criteria, we establish pointwise and global approximation results in function spaces when the number of data curves is large enough. We exploit this feature to develop the asymptotic theory when a finite number of curves is observed at time-points given by an i.i.d. sample whose cardinality increases up to infinity. We use these results to investigate the problem of estimating unobserved segments of a partially observed functional data sample as well as to study the problem of functional classification and outlier detection. For such problems, our methods are competitive with and sometimes superior to benchmark predictions in the field.
Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive time series often have common daily patterns that are repeated between similar days or seasons and shared between grouped mete
Aggregation of large databases in a specific format is a frequently used process to make the data easily manageable. Interval-valued data is one of the data types that is generated by such an aggregation process. Using traditional methods to analyze
Task-based functional magnetic resonance imaging (task fMRI) is a non-invasive technique that allows identifying brain regions whose activity changes when individuals are asked to perform a given task. This contributes to the understanding of how the
Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the prese
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected with measurement errors on discretized grids. In order to accurately smooth noisy functional observations