ﻻ يوجد ملخص باللغة العربية
We have recently demonstrated supervised deep learning methods for rapid generation of radiofrequency pulses in magnetic resonance imaging (https://doi.org/10.1002/mrm.27740, https://doi.org/10.1002/mrm.28667). Unlike the previous iterative optimization approaches, deep learning methods generate a pulse using a fixed number of floating-point operations - this is important in MRI, where patient-specific pulses preferably must be produced in real time. However, deep learning requires vast training libraries, which must be generated using the traditional methods, e.g. iterative quantum optimal control methods. Those methods are usually variations of gradient descent, and the calculation of the fidelity gradient of the performance metric with respect to the pulse waveform can be the most numerically intensive step. In this communication, we explore various ways in which the calculation of fidelity gradients in quantum optimal control theory may be accelerated. Four optimization avenues are explored: truncated commutator series expansions at zeroth and first order, a novel midpoint truncation scheme at first order, and the exact complex-step method. For the spin systems relevant to MRI, the first-order truncation is found to be sufficiently accurate, but also up to five times faster than the machine precision gradient. This makes the generation of training databases for the machine learning methods considerably more realistic.
In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruct
This paper studies the optimal output-feedback control of a linear time-invariant system where a stochastic event-based scheduler triggers the communication between the sensor and the controller. The primary goal of the use of this type of scheduling
This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency
Purpose: This study demonstrated an MR signal multitask learning method for 3D simultaneous segmentation and relaxometry of human brain tissues. Materials and Methods: A 3D inversion-prepared balanced steady-state free precession sequence was used fo
Extreme multi-label classification (XMC) aims to learn a model that can tag data points with a subset of relevant labels from an extremely large label set. Real world e-commerce applications like personalized recommendations and product advertising c