ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformable Slice-to-Volume Registration for Motion Correction in Fetal Body MRI

103   0   0.0 ( 0 )
 نشر من قبل Alena Uus
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruction methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.



قيم البحث

اقرأ أيضاً

Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need t o be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.
164 - Xin Zhen , Xuejun Gu , Hao Yan 2012
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.
Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly- accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.
Fluorine-19 (19F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we teste d the hypothesis that a 19F MRI pulse sequence that combines a specific undersampling regime with signal averaging has increased sensitivity and robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing. To this end, numerical simulations and phantom experiments were performed to characterize the point spread function (PSF) of undersampling patterns and the vulnerability to noise of acquisition-reconstruction strategies with paired numbers of x signal averages and acceleration factor x (NAx-AFx). At all investigated noise levels, the DSC of the acquisition-reconstruction strategies strongly depended on the regularization parameters and acceleration factor. In phantoms, motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motions. Differences were assessed with Dice similarity coefficients (DSC), and were consistently higher for NA8-AF8 compared to NA1-AF1 strategy, for both simulated and real cyclic motions (P<0.001). Both acquisition-reconstruction strategies were validated in vivo in mice (n=2) injected with perfluoropolyether. These images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypothesis that in 19F MRI, the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing.
213 - Xuejun Gu , Bin Dong , Jing Wang 2013
In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto propagated cont ours on the treatment CT may contain relatively large errors, especially in low contrast regions. A clinician inspection and editing of the propagated contours are frequently needed. The edited contours are able to meet the clinical requirement for adaptive therapy; however, the DVF is still inaccurate and inconsistent with the edited contours. The purpose of this work is to develop a contour-guided deformable image registration (CG-DIR) algorithm to improve the accuracy and consistency of the DVF for adaptive radiotherapy. Incorporation of the edited contours into the registration algorithm is realized by regularizing the objective function of the original demons algorithm with a term of intensity matching between the delineated structures set pairs. The CG-DIR algorithm is implemented on computer graphics processing units (GPUs) by following the original GPU-based demons algorithm computation framework [Gu et al, Phys Med Biol. 55(1): 207-219, 2010]. The performance of CG-DIR is evaluated on five clinical head-and-neck and one pelvic cancer patient data. It is found that compared with the original demons, CG-DIR improves the accuracy and consistency of the DVF, while retaining similar high computational efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا