ﻻ يوجد ملخص باللغة العربية
This study presents a comparison of quantitative MRI methods based on an efficiency metric that quantifies their intrinsic ability to extract information about tissue parameters. Under a regime of unbiased parameter estimates, an intrinsic efficiency metric $eta$ was derived for fully-sampled experiments which can be used to both optimize and compare sequences. Here we optimize and compare several steady-state and transient gradient-echo based qMRI methods, such as magnetic resonance fingerprinting (MRF), for joint T1 and T2 mapping. The impact of undersampling was also evaluated, assuming incoherent aliasing that is treated as noise by parameter estimation. In-vivo validation of the efficiency metric was also performed. Transient methods such as MRF can be up to 3.5 times more efficient than steady-state methods, when spatial undersampling is ignored. If incoherent aliasing is treated as noise during least-squares parameter estimation, the efficiency is reduced in proportion to the SNR of the data, with reduction factors of 5 often seen for practical SNR levels. In-vivo validation showed a very good agreement between the theoretical and experimentally predicted efficiency. This work presents and validates an efficiency metric to optimize and compare the performance of qMRI methods. Transient methods were found to be intrinsically more efficient than steady-state methods, however the effect of spatial undersampling can significantly erode this advantage.
Purpose: This study demonstrated an MR signal multitask learning method for 3D simultaneous segmentation and relaxometry of human brain tissues. Materials and Methods: A 3D inversion-prepared balanced steady-state free precession sequence was used fo
Novel methods for quantitative, transient-state multiparametric imaging are increasingly being demonstrated for assessment of disease and treatment efficacy. Here, we build on these by assessing the most common Non-Cartesian readout trajectories (2D/
Purpose: To develop a method that adaptively generates tiny dictionaries for joint T1-T2 mapping. Theory: This work breaks the bond between dictionary size and representation accuracy (i) by approximating the Bloch-response manifold by piece-wise l
Purpose: To rapidly obtain high isotropic-resolution T2 maps with whole-brain coverage and high geometric fidelity. Methods: A T2 blip-up/down echo planar imaging (EPI) acquisition with generalized Slice-dithered enhanced resolution (T2-BUDA-gSlide
To rapidly obtain high resolution T2, T2* and quantitative susceptibility mapping (QSM) source separation maps with whole-brain coverage and high geometric fidelity. We propose Blip Up-Down Acquisition for Spin And Gradient Echo imaging (BUDA-SAGE),