ﻻ يوجد ملخص باللغة العربية
Neural network based speech recognition systems suffer from performance degradation due to accented speech, especially unfamiliar accents. In this paper, we study the supervised contrastive learning framework for accented speech recognition. To build different views (similar positive data samples) for contrastive learning, three data augmentation techniques including noise injection, spectrogram augmentation and TTS-same-sentence generation are further investigated. From the experiments on the Common Voice dataset, we have shown that contrastive learning helps to build data-augmentation invariant and pronunciation invariant representations, which significantly outperforms traditional joint training methods in both zero-shot and full-shot settings. Experiments show that contrastive learning can improve accuracy by 3.66% (zero-shot) and 3.78% (full-shot) on average, comparing to the joint training method.
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, Emo
We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of it
This paper presents a self-supervised learning framework, named MGF, for general-purpose speech representation learning. In the design of MGF, speech hierarchy is taken into consideration. Specifically, we propose to use generative learning approache
The goal of this work is to train robust speaker recognition models without speaker labels. Recent works on unsupervised speaker representations are based on contrastive learning in which they encourage within-utterance embeddings to be similar and a
This paper describes the AISpeech-SJTU system for the accent identification track of the Interspeech-2020 Accented English Speech Recognition Challenge. In this challenge track, only 160-hour accented English data collected from 8 countries and the a