ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrating Recurrence Dynamics for Speech Emotion Recognition

91   0   0.0 ( 0 )
 نشر من قبل Efthymios Tzinis
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionals over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.



قيم البحث

اقرأ أيضاً

In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EmoSet, is assembled from a number of existing SER corpora. In total, Emo Set contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus speech emotion recognition, namely EmoNet. A combination of a deep ResNet architecture and residual adapters is transferred from the field of multi-domain visual recognition to multi-corpus SER on EmoSet. Compared against two suitable baselines and more traditional training and transfer settings for the ResNet, the residual adapter approach enables parameter efficient training of a multi-domain SER model on all 26 corpora. A shared model with only $3.5$ times the number of parameters of a model trained on a single database leads to increased performance for 21 of the 26 corpora in EmoSet. Measured by McNemars test, these improvements are further significant for ten datasets at $p<0.05$ while there are just two corpora that see only significant decreases across the residual adapter transfer experiments. Finally, we make our EmoNet framework publicly available for users and developers at https://github.com/EIHW/EmoNet. EmoNet provides an extensive command line interface which is comprehensively documented and can be used in a variety of multi-corpus transfer learning settings.
In Speech Emotion Recognition (SER), emotional characteristics often appear in diverse forms of energy patterns in spectrograms. Typical attention neural network classifiers of SER are usually optimized on a fixed attention granularity. In this paper , we apply multiscale area attention in a deep convolutional neural network to attend emotional characteristics with varied granularities and therefore the classifier can benefit from an ensemble of attentions with different scales. To deal with data sparsity, we conduct data augmentation with vocal tract length perturbation (VTLP) to improve the generalization capability of the classifier. Experiments are carried out on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset. We achieved 79.34% weighted accuracy (WA) and 77.54% unweighted accuracy (UA), which, to the best of our knowledge, is the state of the art on this dataset.
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper present s results for speech emotion recognition for 4 languages in both single corpus and cross corpus setting. Additionally, since multi-task learning (MTL) with gender, naturalness and arousal as auxiliary tasks has shown to enhance the generalisation capabilities of the emotion models, this paper introduces language ID as another auxiliary task in MTL framework to explore the role of spoken language on emotion recognition which has not been studied yet.
Neural network based speech recognition systems suffer from performance degradation due to accented speech, especially unfamiliar accents. In this paper, we study the supervised contrastive learning framework for accented speech recognition. To build different views (similar positive data samples) for contrastive learning, three data augmentation techniques including noise injection, spectrogram augmentation and TTS-same-sentence generation are further investigated. From the experiments on the Common Voice dataset, we have shown that contrastive learning helps to build data-augmentation invariant and pronunciation invariant representations, which significantly outperforms traditional joint training methods in both zero-shot and full-shot settings. Experiments show that contrastive learning can improve accuracy by 3.66% (zero-shot) and 3.78% (full-shot) on average, comparing to the joint training method.
Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N etworks (DNN), most of the studies in the literature fail to consider the semantic information in the speech signal. In this paper, we propose a novel framework that can capture both the semantic and the paralinguistic information in the signal. In particular, our framework is comprised of a semantic feature extractor, that captures the semantic information, and a paralinguistic feature extractor, that captures the paralinguistic information. Both semantic and paraliguistic features are then combined to a unified representation using a novel attention mechanism. The unified feature vector is passed through a LSTM to capture the temporal dynamics in the signal, before the final prediction. To validate the effectiveness of our framework, we use the popular SEWA dataset of the AVEC challenge series and compare with the three winning papers. Our model provides state-of-the-art results in the valence and liking dimensions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا