ﻻ يوجد ملخص باللغة العربية
We demonstrate an external cavity laser formed by combining a silicon nitride photonic integrated circuit with a reflective semiconductor optical amplifier. The laser uses an alignment tolerant edge coupler formed by a multi-mode waveguide splitter right at the edge of the silicon nitride chip that relaxes the required alignment to the III-V gain chip and equally splits the power among its two output waveguides. Both the ground and first order mode are excited in the coupler and reach the quadrature condition at the waveguide junction, ensuring equal power to be coupled to both. Two high-quality-factor ring resonators arranged in Vernier configuration close a Sagnac loop between the two waveguides. In addition to wideband frequency tuning, they result in a longer effective cavity length. The alignment tolerant coupler increases the alignment tolerance in the two directions parallel to the chip surface by a factor 3 relative to conventional edge couplers, making it ideal for gain chip integration via pick-and-place technology. Lasing is maintained in a misalignment range of $pm$6 $mu$m in the direction along the edge of the chip. A Lorentzian laser linewidth of 42 kHz is achieved.
The design of a 671 nm diode laser with a mode-hop-free tuning range of 40 GHz is described. This long tuning range is achieved by simultaneously ramping the external cavity length with the laser injection current. The external cavity consists of a m
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our
Integrated photonics has enabled signal synthesis, modulation and conversion using photonic integrated circuits (PIC). Many materials have been developed, among which silicon nitride (Si$_3$N$_4$) has emerged as a leading platform particularly for no
Silicon photonics enables wafer-scale integration of optical functionalities on chip. A silicon-based laser frequency combs could significantly expand the applications of silicon photonics, by providing integrated sources of mutually coherent laser l
Nanoscale photonic crystal cavity optomechanical devices enable detection of nanomechanical phenomena with a sensitivity sufficient to observe quantum effects. Here we present the design of a one-dimensional air-mode photonic crystal cavity patterned