ﻻ يوجد ملخص باللغة العربية
Integrated photonics has enabled signal synthesis, modulation and conversion using photonic integrated circuits (PIC). Many materials have been developed, among which silicon nitride (Si$_3$N$_4$) has emerged as a leading platform particularly for nonlinear photonics. Low-loss Si$_3$N$_4$ PIC has been widely used for frequency comb generation, narrow-linewidth lasers, microwave photonics, photonic computing networks, and even surface-electrode ion traps. Yet, among all demonstrated functionalities for Si$_3$N$_4$ integrated photonics, optical non-reciprocal devices, such as isolators and circulators, have not been achieved. Conventionally, they are realized based on Faraday effect of magneto-optic materials under external magnetic field. However, it has been challenging to integrate magneto-optic materials that are not CMOS-compatible and that require bulky external magnet. Here, we demonstrate a magnetic-free optical isolator based on aluminum nitride (AlN) piezoelectric modulators monolithically integrated on ultralow-loss Si$_3$N$_4$ PIC. The transmission reciprocity is broken by spatio-temporal modulation of a Si$_3$N$_4$ microring resonator with three AlN bulk acoustic wave resonators that are driven with a rotational phase. This design creates an effective rotating acoustic wave that allows indirect interband transition in only one direction among a pair of strongly coupled optical modes. Maximum of 10 dB isolation is achieved under 100 mW RF power applied to each actuator, with minimum insertion loss of 0.1 dB. The isolation remains constant over nearly 30 dB dynamic range of optical input power, showing excellent optical linearity. Our integrated, linear, magnetic-free, electrically driven optical isolator could become key building blocks for integrated lasers, chip-scale LiDAR engines, as well as optical interfaces for superconducting circuits.
Hybrid integrated semiconductor laser sources offering extremely narrow spectral linewidth as well as compatibility for embedding into integrated photonic circuits are of high importance for a wide range of applications. We present an overview on our
Silicon nitride (SiN) waveguides with ultra-low optical loss enable integrated photonic applications including low noise, narrow linewidth lasers, chip-scale nonlinear photonics, and microwave photonics. Lasers are key components to SiN photonic inte
Gallium nitride (GaN) as a wide-band gap material has been widely used in solid-state lighting. Thanks to its high nonlinearity and high refractive index contrast, GaN-on-insulator (GaNOI) is also a promising platform for nonlinear optical applicatio
Optical beamforming networks (OBFNs) based on optical true time delay lines (OTTDLs) are well-known as the promising candidate to solve the bandwidth limitation of traditional electronic phased array antennas (PAAs) due to beam squinting. Here we rep
Due to the inherent in-direct bandgap nature of Silicon, heterogeneous integration of semiconductor lasers on Silicon on Insulator (SOI) is crucial for next-generation on-chip optical interconnects. Compact, high-efficient and high-tolerant couplers