ترغب بنشر مسار تعليمي؟ اضغط هنا

Excited rotational states of molecules in a superfluid

96   0   0.0 ( 0 )
 نشر من قبل Igor Cherepanov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS$_2$ and I$_2$ as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity -- the angular momentum, transferred from the molecule to the droplet.

قيم البحث

اقرأ أيضاً

The presence of solvent tunes many properties of a molecule, such as its ground and excited state geometry, dipole moment, excitation energy, and absorption spectrum. Because the energy of the system will vary depending on the solvent configuration, explicit solute-solvent interactions are key to understanding solution-phase reactivity and spectroscopy, simulating accurate inhomogeneous broadening, and predicting absorption spectra. In this tutorial review, we give an overview of factors to consider when modeling excited states of molecules interacting with explicit solvent. We provide practical guidelines for sampling solute-solvent configurations, choosing a solvent model, performing the excited state electronic structure calculations, and computing spectral lineshapes. We also present our recent results combining the vertical excitation energies computed from an ensemble of solute-solvent configurations with the vibronic spectra obtained from a small number of frozen solvent configurations, resulting in improved simulation of absorption spectra for molecules in solution.
We revisit here the Kibble-Zurek mechanism for superfluid bosons slowly driven across the transition towards the Mott-insulating phase. By means of a combination of the Time-Dependent Variational Principle and a Tree-Tensor Network, we characterize t he current flowing during annealing in a ring-shaped one-dimensional Bose-Hubbard model with artificial classical gauge field on up to 32 lattice sites. We find that the superfluid current shows, after an initial decrease, persistent oscillations which survive even when the system is well inside the Mott insulating phase. We demonstrate that the amplitude of such oscillations is connected to the residual energy, characterizing the creation of defects while crossing the quantum critical point, while their frequency matches the spectral gap in the Mott insulating phase. Our predictions can be verified in future atomtronics experiments with neutral atoms in ring shaped traps. We believe that the proposed setup provides an interesting but simple platform to study the non-equilibrium quantum dynamics of persistent currents experimentally.
We introduce a new optical tool - a two-dimensional optical centrifuge, capable of aligning molecules in extreme rotational states. Unlike the conventional centrifuge, which confines the molecules in the plane of their rotation, its two-dimensional v ersion aligns the molecules along a well-defined axis, similarly to the effect of a single linearly polarized laser pulse, but at a much higher level of rotational excitation. The increased robustness of ultra-high rotational states with respect to collisions results in a longer life time of the created alignment in dense media, offering new possibilities for studying and utilizing aligned molecular ensembles under ambient conditions.
This paper reports an implementation of Hartree-Fock linear response with complex orbitals for computing electronic spectra of molecules in a strong external magnetic fields. The implementation is completely general, allowing for spin-restricted, spi n-unrestricted, and general two-component reference states. The method is applied to small molecules placed in strong uniform and non-uniform magnetic fields of astrochemical importance at the Random Phase Approximation level of theory. For uniform fields, where comparison is possible, the spectra are found to be qualitatively similar to those recently obtained with equation of motion coupled cluster theory. We also study the behaviour of spin-forbidden excitations with progressive loss of spin symmetry induced by non-uniform magnetic fields. Finally, the equivalence of length and velocity gauges for oscillator strengths when using complex orbitals is investigated and found to hold numerically.
We study the single-particle properties of a system formed by ultracold atoms loaded into the manifold of $l=1$ Orbital Angular Momentum (OAM) states of an optical lattice with a diamond chain geometry. Through a series of successive basis rotations, we show that the OAM degree of freedom induces phases in some tunneling amplitudes of the tight-binding model that are equivalent to a net $pi$ flux through the plaquettes and give rise to a topologically non-trivial band structure and protected edge states. In addition, we demonstrate that quantum interferences between the different tunneling processes involved in the dynamics may lead to Aharanov-Bohm caging in the system. All these analytical results are confirmed by exact diagonalization numerical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا