ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological edge states with ultracold atoms carrying orbital angular momentum in a diamond chain

84   0   0.0 ( 0 )
 نشر من قبل Gerard Pelegr\\'i
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the single-particle properties of a system formed by ultracold atoms loaded into the manifold of $l=1$ Orbital Angular Momentum (OAM) states of an optical lattice with a diamond chain geometry. Through a series of successive basis rotations, we show that the OAM degree of freedom induces phases in some tunneling amplitudes of the tight-binding model that are equivalent to a net $pi$ flux through the plaquettes and give rise to a topologically non-trivial band structure and protected edge states. In addition, we demonstrate that quantum interferences between the different tunneling processes involved in the dynamics may lead to Aharanov-Bohm caging in the system. All these analytical results are confirmed by exact diagonalization numerical calculations.

قيم البحث

اقرأ أيضاً

We propose a realization of a two-dimensional higher-order topological insulator with ultracold atoms loaded into orbital angular momentum (OAM) states of an optical lattice. The symmetries of the OAM states induce relative phases in the tunneling am plitudes that allow to describe the system in terms of two decoupled lattice models. Each of these models displays one-dimensional edge states and zero-dimensional corner states that are correlated with the topological properties of the bulk. We show that the topologically non-trivial regime can be explored in a wide range of experimentally feasible values of the parameters of the physical system. Furthermore, we propose an alternative way to characterize the second-order topological corner states based on the computation of the Zaks phases of the bands of first-order edge states.
We show how strongly correlated ultracold bosonic atoms loaded in specific orbital angular momentum states of arrays of cylindrically symmetric potentials can realize a variety of spin-1/2 models of quantum magnetism. We consider explicitly the depen dence of the effective couplings on the geometry of the system and demonstrate that several models of interest related to a general $XYZ$ Heisenberg model with external field can be obtained. Furthermore, we discuss how the relative strength of the effective couplings can be tuned and which phases can be explored by doing so in realistic setups. Finally, we address questions concerning the experimental read-out and implementation and we argue that the stability of the system can be enhanced by using ring-shaped trapping potentials.
Chiral surface states along the zigzag edge of a valley photonic crystal in the honeycomb lattice are demonstrated. By decomposing the local fields into orbital angular momentum (OAM) modes, we find that the chiral surface states present OAM-dependen t unidirectional propagation characteristics. Particularly, the propagation directivities of the surface states are quantified by the local OAM decomposition and are found to depend on the chiralities of both the source and surface states. These findings allow for the engineering control of the unidirectional propagation of electromagnetic energy without requiring an ancillary cladding layer. Furthermore, we examine the propagation of the chiral surface states against sharp bends. It turns out that although only certain states successfully pass through the bend, the unidirectional propagation is well maintained due to the topology of the structure.
We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping pot ential. We show that different situations displaying Kondo physics can be realized when Feshbach resonances between the species are tuned by a magnetic field and the trapping frequency is varied. We illustrate that a mixture of ${}^{40}$K and ${}^{23}$Na atoms can be used to generate a Kondo correlated state and that momentum resolved radio frequency spectroscopy can provide unambiguous signatures of the formation of Kondo resonances at the Fermi energy. We discuss how tools of atomic physics can be used to investigate open questions for Kondo physics, such as the extension of the Kondo screening cloud.
The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model introducing a novel implementation of the two-level system, p rovided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. Furthermore, we also identify a generalized version of the quantum Rabi model in a periodic phase space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا