ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluid to Mott transition in a Bose-Hubbard ring: Persistent currents and defect formation

73   0   0.0 ( 0 )
 نشر من قبل Lucas Kohn
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit here the Kibble-Zurek mechanism for superfluid bosons slowly driven across the transition towards the Mott-insulating phase. By means of a combination of the Time-Dependent Variational Principle and a Tree-Tensor Network, we characterize the current flowing during annealing in a ring-shaped one-dimensional Bose-Hubbard model with artificial classical gauge field on up to 32 lattice sites. We find that the superfluid current shows, after an initial decrease, persistent oscillations which survive even when the system is well inside the Mott insulating phase. We demonstrate that the amplitude of such oscillations is connected to the residual energy, characterizing the creation of defects while crossing the quantum critical point, while their frequency matches the spectral gap in the Mott insulating phase. Our predictions can be verified in future atomtronics experiments with neutral atoms in ring shaped traps. We believe that the proposed setup provides an interesting but simple platform to study the non-equilibrium quantum dynamics of persistent currents experimentally.



قيم البحث

اقرأ أيضاً

We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berez inskii-Kosterlitz-Thouless scenario of the interaction-driven Mott transition. In two and three dimensions, we find evidences that, across the transition,most of the spectral weight is concentrated at high energies, suggestive of pre-formed Mott-Hubbard side-bands. This result is compatible with the experimental data by Stoferle et al. [Phys. Rev. Lett. 92, 130403 (2004)].
Semiconductor microcavity polaritons in the optical parametric scattering regime have been recently demonstrated to display a new variety of dissipationless superfluid behaviour. We report the first observation in resonantly pumped exciton polaritons of a metastable persistent superflow carrying quantum of angular momentum, m. The quantised vortex, excited by a weak 2 ps pulsed probe, is shown to last for at least 80 ps, limited only by the leaking outside the cavity. The polariton circulating superfluid persists in the absence of the driving rotating probe with no apparent dissipation. In addition, for a moving superfluid, we show the coherent splitting of a quantised double vortex, with charge m=2, into two singly quantised vortices of m=1. Remarkably, we observe the m=2 vortex to be stable when they are at rest. The experimental results are compared with a theoretical analysis, obtained describing the triggered parametric scattering regime of polaritons via a two-component Gross-Pitaevskii equation, including pump and decay processes.
We study nonlinear cavity arrays where the particle relaxation rate in each cavity increases with the excitation number. We show that coherent parametric inputs can drive such arrays into states with commensurate filling that form non-equilibrium ana logs of Mott insulating states. We explore the boundaries of the Mott insulating phase and the transition to a delocalized phase with spontaneous first order coherence. While sharing many similarities with the Mott insulator to superfluid transition in equilibrium, the phase-diagrams we find also show marked differences. Particularly the off diagonal order does not become long range since the influence of dephasing processes increases with increasing tunneling rates.
We report here the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a diss ipation driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.
The design, accurate preparation and manipulation of quantum states in quantum circuits are essential operational tasks at the heart of quantum technologies. Nowadays, circuits can be designed with physical parameters that can be controlled with unpr ecedented accuracy and flexibility. However, the generation of well-controlled current states is still a nagging bottleneck, especially when different circuit elements are integrated together. In this work, we show how machine learning can effectively address this challenge and outperform the current existing methods. To this end, we exploit deep reinforcement learning to prepare prescribed quantum current states in circuits composed of lumped elements. To highlight our method, we show how to engineer bosonic persistent currents as they are relevant in different quantum technologies as cold atoms and superconducting circuits. We demonstrate the use of deep reinforcement learning to re-discover established protocols, as well as solve configurations that are difficult to treat with other methods. With our approach, quantum current states characterised by a single winding number or entangled currents of multiple winding numbers can be prepared in a robust manner, superseding the existing protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا