ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven simulation and characterisation of Au nanoparticles melting

66   0   0.0 ( 0 )
 نشر من قبل Claudio Zeni
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop efficient, accurate, transferable, and interpretable machine learning force fields for Au nanoparticles, based on data gathered from Density Functional Theory calculations. We then use them to investigate the thermodynamic stability of Au nanoparticles of different sizes (1 to 6 nm), containing up to 6266 atoms, with respect to a solid-liquid phase change through molecular dynamics simulations. We predict nanoparticle melting temperatures in good agreement with respect to available experimental data. Furthermore, we characterize in detail the solid to liquid phase change mechanism employing an unsupervised learning scheme to categorize local atomic environments. We thus provide a rigorous and data-driven definition of liquid atomic arrangements in the inner and surface regions of a nanoparticle, and employ it to show that melting initiates at the outer layers.



قيم البحث

اقرأ أيضاً

As data science and machine learning methods are taking on an increasingly important role in the materials research community, there is a need for the development of machine learning software tools that are easy to use (even for nonexperts with no pr ogramming ability), provide flexible access to the most important algorithms, and codify best practices of machine learning model development and evaluation. Here, we introduce the Materials Simulation Toolkit for Machine Learning (MAST-ML), an open source Python-based software package designed to broaden and accelerate the use of machine learning in materials science research. MAST-ML provides predefined routines for many input setup, model fitting, and post-analysis tasks, as well as a simple structure for executing a multi-step machine learning model workflow. In this paper, we describe how MAST-ML is used to streamline and accelerate the execution of machine learning problems. We walk through how to acquire and run MAST-ML, demonstrate how to execute different components of a supervised machine learning workflow via a customized input file, and showcase a number of features and analyses conducted automatically during a MAST-ML run. Further, we demonstrate the utility of MAST-ML by showcasing examples of recent materials informatics studies which used MAST-ML to formulate and evaluate various machine learning models for an array of materials applications. Finally, we lay out a vision of how MAST-ML, together with complementary software packages and emerging cyberinfrastructure, can advance the rapidly growing field of materials informatics, with a focus on producing machine learning models easily, reproducibly, and in a manner that facilitates model evolution and improvement in the future.
113 - Luca Pavan , Kevin Rossi , 2015
We show how standard Metadynamics coupled with classical Molecular Dynamics can be successfully ap- plied to sample the configurational and free energy space of metallic and bimetallic nanopclusters via the implementation of collective variables rela ted to the pair distance distribution function of the nanoparticle itself. As paradigmatic examples we show an application of our methodology to Ag147, Pt147 and their alloy AgshellPtcore at 1:1 and 2:1 chemical compositions. The proposed scheme is not only able to reproduce known structural transformation pathways, as the five and the six square-diamond mechanisms both in pure and core-shell nanoparticles but also to predict a new route connecting icosahedron to anti-cuboctahedron.
The analysis of defects and defect dynamics in crystalline materials is important for fundamental science and for a wide range of applied engineering. With increasing system size the analysis of molecular-dynamics simulation data becomes non-trivial. Here, we present a workflow for semi-automatic identification and classification of defects in crystalline structures, combining a new approach for defect description with several already existing open-source software packages. Our approach addresses the key challenges posed by the often relatively tiny volume fraction of the modified parts of the sample, thermal motion and the presence of potentially unforeseen atomic configurations (defect types) after irradiation. The local environment of any atom is converted into a rotation-invariant descriptive vector (fingerprint), which can be compared to known defect types and also yields a distance metric suited for classification. Vectors which cannot be associated to known structures indicate new types of defects. As proof-of-concept we apply our method on an iron sample to analyze the defects caused by a collision cascade induced by a 10 keV primary-knock-on-atom. The obtained results are in good agreement with reported literature values.
Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solut ion of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.
231 - Olivier Coulaud 2013
We describe extensions to the siesta density functional theory (dft) code [30], for the simulation of isolated molecules and their absorption spectra. The extensions allow for: - Use of a multi-grid solver for the Poisson equation on a finite dft mes h. Non-periodic, Dirichlet boundary conditions are computed by expansion of the electric multipoles over spherical harmonics. - Truncation of a molecular system by the method of design atom pseudo- potentials of Xiao and Zhang[32]. - Electrostatic potential fitting to determine effective atomic charges. - Derivation of electronic absorption transition energies and oscillator stren- gths from the raw spectra produced by a recently described, order O(N3), time-dependent dft code[21]. The code is furthermore integrated within siesta as a post-processing option.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا