ﻻ يوجد ملخص باللغة العربية
The analysis of defects and defect dynamics in crystalline materials is important for fundamental science and for a wide range of applied engineering. With increasing system size the analysis of molecular-dynamics simulation data becomes non-trivial. Here, we present a workflow for semi-automatic identification and classification of defects in crystalline structures, combining a new approach for defect description with several already existing open-source software packages. Our approach addresses the key challenges posed by the often relatively tiny volume fraction of the modified parts of the sample, thermal motion and the presence of potentially unforeseen atomic configurations (defect types) after irradiation. The local environment of any atom is converted into a rotation-invariant descriptive vector (fingerprint), which can be compared to known defect types and also yields a distance metric suited for classification. Vectors which cannot be associated to known structures indicate new types of defects. As proof-of-concept we apply our method on an iron sample to analyze the defects caused by a collision cascade induced by a 10 keV primary-knock-on-atom. The obtained results are in good agreement with reported literature values.
Accurate phase diagram calculation from molecular dynamics requires systematic treatment and convergence of statistical averages. In this work we propose a Gaussian process regression based framework for reconstructing the free energy functions using
We develop efficient, accurate, transferable, and interpretable machine learning force fields for Au nanoparticles, based on data gathered from Density Functional Theory calculations. We then use them to investigate the thermodynamic stability of Au
It would be a natural expectation that only major peaks, not all of them, would make an important contribution to the characterization of the XRD pattern. We developed a scheme that can identify which peaks are relavant to what extent by using auto-e
We applied the clustering technique using DTW (dynamic time wrapping) analysis to XRD (X-ray diffraction) spectrum patterns in order to identify the microscopic structures of substituents introduced in the main phase of magnetic alloys. The clusterin
This work develops a new open source API and software package called textit{SymPhas} for simulations of phase-field, phase-field crystal and reaction-diffusion models, supporting up to three dimensions and an arbitrary number of fields. textit{SymPha