ﻻ يوجد ملخص باللغة العربية
Solving multi-goal reinforcement learning (RL) problems with sparse rewards is generally challenging. Existing approaches have utilized goal relabeling on collected experiences to alleviate issues raised from sparse rewards. However, these methods are still limited in efficiency and cannot make full use of experiences. In this paper, we propose Model-based Hindsight Experience Replay (MHER), which exploits experiences more efficiently by leveraging environmental dynamics to generate virtual achieved goals. Replacing original goals with virtual goals generated from interaction with a trained dynamics model leads to a novel relabeling method, emph{model-based relabeling} (MBR). Based on MBR, MHER performs both reinforcement learning and supervised learning for efficient policy improvement. Theoretically, we also prove the supervised part in MHER, i.e., goal-conditioned supervised learning with MBR data, optimizes a lower bound on the multi-goal RL objective. Experimental results in several point-based tasks and simulated robotics environments show that MHER achieves significantly higher sample efficiency than previous state-of-the-art methods.
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore
Multi-goal reinforcement learning is widely applied in planning and robot manipulation. Two main challenges in multi-goal reinforcement learning are sparse rewards and sample inefficiency. Hindsight Experience Replay (HER) aims to tackle the two chal
Efficient learning in the environment with sparse rewards is one of the most important challenges in Deep Reinforcement Learning (DRL). In continuous DRL environments such as robotic arms control, Hindsight Experience Replay (HER) has been shown an e
Hindsight experience replay (HER) is a goal relabelling technique typically used with off-policy deep reinforcement learning algorithms to solve goal-oriented tasks; it is well suited to robotic manipulation tasks that deliver only sparse rewards. In
In reinforcement learning, experience replay stores past samples for further reuse. Prioritized sampling is a promising technique to better utilize these samples. Previous criteria of prioritization include TD error, recentness and corrective feedbac