ﻻ يوجد ملخص باللغة العربية
Efficient learning in the environment with sparse rewards is one of the most important challenges in Deep Reinforcement Learning (DRL). In continuous DRL environments such as robotic arms control, Hindsight Experience Replay (HER) has been shown an effective solution. However, due to the brittleness of deterministic methods, HER and its variants typically suffer from a major challenge for stability and convergence, which significantly affects the final performance. This challenge severely limits the applicability of such methods to complex real-world domains. To tackle this challenge, in this paper, we propose Soft Hindsight Experience Replay (SHER), a novel approach based on HER and Maximum Entropy Reinforcement Learning (MERL), combining the failed experiences reuse and maximum entropy probabilistic inference model. We evaluate SHER on Open AI Robotic manipulation tasks with sparse rewards. Experimental results show that, in contrast to HER and its variants, our proposed SHER achieves state-of-the-art performance, especially in the difficult HandManipulation tasks. Furthermore, our SHER method is more stable, achieving very similar performance across different random seeds.
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore
Hindsight experience replay (HER) is a goal relabelling technique typically used with off-policy deep reinforcement learning algorithms to solve goal-oriented tasks; it is well suited to robotic manipulation tasks that deliver only sparse rewards. In
Solving multi-goal reinforcement learning (RL) problems with sparse rewards is generally challenging. Existing approaches have utilized goal relabeling on collected experiences to alleviate issues raised from sparse rewards. However, these methods ar
Episodic self-imitation learning, a novel self-imitation algorithm with a trajectory selection module and an adaptive loss function, is proposed to speed up reinforcement learning. Compared to the original self-imitation learning algorithm, which sam
Multi-goal reinforcement learning is widely applied in planning and robot manipulation. Two main challenges in multi-goal reinforcement learning are sparse rewards and sample inefficiency. Hindsight Experience Replay (HER) aims to tackle the two chal