ترغب بنشر مسار تعليمي؟ اضغط هنا

On independent domination of regular graphs

88   0   0.0 ( 0 )
 نشر من قبل Eun-Kyung Cho
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a graph $G$, a dominating set of $G$ is a set $S$ of vertices such that each vertex not in $S$ has a neighbor in $S$. The domination number of $G$, denoted $gamma(G)$, is the minimum size of a dominating set of $G$. The independent domination number of $G$, denoted $i(G)$, is the minimum size of a dominating set of $G$ that is also independent. Note that every graph has an independent dominating set, as a maximal independent set is equivalent to an independent dominating set. Let $G$ be a connected $k$-regular graph that is not $K_{k, k}$ where $kgeq 4$. Generalizing a result by Lam, Shiu, and Sun, we prove that $i(G)le frac{k-1}{2k-1}|V(G)|$, which is tight for $k = 4$. This answers a question by Goddard et al. in the affirmative. We also show that $frac{i(G)}{gamma(G)} le frac{k^3-3k^2+2}{2k^2-6k+2}$, strengthening upon a result of Knor, v{S}krekovski, and Tepeh. In addition, we prove that a graph $G$ with maximum degree at most $4$ satisfies $i(G) le frac{5}{9}|V(G)|$, which is also tight.

قيم البحث

اقرأ أيضاً

In this article, we discuss when one can extend an r-regular graph to an r + 1 regular by adding edges. Different conditions on the num- ber of vertices n and regularity r are developed. We derive an upper bound of r, depending on n, for which, every regular graph G(n, r) can be extended to an r + 1-regular graph with n vertices. Presence of induced complete bipartite subgraph and complete subgraph is dis- cussed, separately, for the extension of regularity.
A dominating set of a graph $G$ is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of $G$ is the order of a minimum dominating set of $G$. The $(t,r)$ broadcast domination is a generalization of domination in which a set of broadcasting vertices emits signals of strength $t$ that decrease by 1 as they traverse each edge, and we require that every vertex in the graph receives a cumulative signal of at least $r$ from its set of broadcasting neighbors. In this paper, we extend the study of $(t,r)$ broadcast domination to directed graphs. Our main result explores the interval of values obtained by considering the directed $(t,r)$ broadcast domination numbers of all orientations of a graph $G$. In particular, we prove that in the cases $r=1$ and $(t,r) = (2,2)$, for every integer value in this interval, there exists an orientation $vec{G}$ of $G$ which has directed $(t,r)$ broadcast domination number equal to that value. We also investigate directed $(t,r)$ broadcast domination on the finite grid graph, the star graph, the infinite grid graph, and the infinite triangular lattice graph. We conclude with some directions for future study.
In this paper, we study the domination number of middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph. We also compute the domination number of some families of graphs such as star graphs, double start grap hs, path graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and friendship graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the domination number of middle graphs.
A set $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total domination number of $G$ is the minimum cardinality of any total dominating set of $G$ and is denoted by $gamma _t(G)$. The total dominating set $D$ is called a total co-independent dominating set if $V(G)setminus D$ is an independent set and has at least one vertex. The minimum cardinality of any total co-independent dominating set is denoted by $gamma_{t,coi}(G)$. In this paper, we show that, for any tree $T$ of order $n$ and diameter at least three, $n-beta(T)leq gamma_{t,coi}(T)leq n-|L(T)|$ where $beta(T)$ is the maximum cardinality of any independent set and $L(T)$ is the set of leaves of $T$. We also characterize the families of trees attaining the extremal bounds above and show that the differences between the value of $gamma_{t,coi}(T)$ and these bounds can be arbitrarily large for some classes of trees.
Let $G=( V(G), E(G) )$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. We say a subset $D$ of $V(G)$ dominates $G$ if every vertex in $V setminus D$ is adjacent to a vertex in $D$. A generalization of this concept is $(t,r)$ broadcas t domination. We designate certain vertices to be towers of signal strength $t$, which send out signal to neighboring vertices with signal strength decaying linearly as the signal traverses the edges of the graph. We let $mathbb{T}$ be the set of all towers, and we define the signal received by a vertex $vin V(G)$ from a tower $w in mathbb T$ to be $f(v)=sum_{win mathbb{T}}max(0,t-d(v,w))$. Blessing, Insko, Johnson, Mauretour (2014) defined a $(t,r)$ broadcast dominating set, or a $(t,r) $ broadcast, on $G$ as a set $mathbb{T} subseteq V(G) $ such that $f(v)geq r$ for all $vin V(G)$. The minimal cardinality of a $(t, r)$ broadcast on $G$ is called the $(t, r)$ broadcast domination number of $G$. In this paper, we present our research on the $(t,r)$ broadcast domination number for certain graphs including paths, grid graphs, the slant lattice, and the kings lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا