ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication-Cost Aware Microphone Selection For Neural Speech Enhancement with Ad-hoc Microphone Arrays

91   0   0.0 ( 0 )
 نشر من قبل Jonah Casebeer
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a method for jointly-learning a microphone selection mechanism and a speech enhancement network for multi-channel speech enhancement with an ad-hoc microphone array. The attention-based microphone selection mechanism is trained to reduce communication-costs through a penalty term which represents a task-performance/ communication-cost trade-off. While working within the trade-off, our method can intelligently stream from more microphones in lower SNR scenes and fewer microphones in higher SNR scenes. We evaluate the model in complex echoic acoustic scenes with moving sources and show that it matches the performance of models that stream from a fixed number of microphones while reducing communication costs.



قيم البحث

اقرأ أيضاً

Speech separation has been shown effective for multi-talker speech recognition. Under the ad hoc microphone array setup where the array consists of spatially distributed asynchronous microphones, additional challenges must be overcome as the geometry and number of microphones are unknown beforehand. Prior studies show, with a spatial-temporalinterleaving structure, neural networks can efficiently utilize the multi-channel signals of the ad hoc array. In this paper, we further extend this approach to continuous speech separation. Several techniques are introduced to enable speech separation for real continuous recordings. First, we apply a transformer-based network for spatio-temporal modeling of the ad hoc array signals. In addition, two methods are proposed to mitigate a speech duplication problem during single talker segments, which seems more severe in the ad hoc array scenarios. One method is device distortion simulation for reducing the acoustic mismatch between simulated training data and real recordings. The other is speaker counting to detect the single speaker segments and merge the output signal channels. Experimental results for AdHoc-LibiCSS, a new dataset consisting of continuous recordings of concatenated LibriSpeech utterances obtained by multiple different devices, show the proposed separation method can significantly improve the ASR accuracy for overlapped speech with little performance degradation for single talker segments.
Recently, ad-hoc microphone array has been widely studied. Unlike traditional microphone array settings, the spatial arrangement and number of microphones of ad-hoc microphone arrays are not known in advance, which hinders the adaptation of tradition al speaker verification technologies to ad-hoc microphone arrays. To overcome this weakness, in this paper, we propose attention-based multi-channel speaker verification with ad-hoc microphone arrays. Specifically, we add an inter-channel processing layer and a global fusion layer after the pooling layer of a single-channel speaker verification system. The inter-channel processing layer applies a so-called residual self-attention along the channel dimension for allocating weights to different microphones. The global fusion layer integrates all channels in a way that is independent to the number of the input channels. We further replace the softmax operator in the residual self-attention with sparsemax, which forces the channel weights of very noisy channels to zero. Experimental results with ad-hoc microphone arrays of over 30 channels demonstrate the effectiveness of the proposed methods. For example, the multi-channel speaker verification with sparsemax achieves an equal error rate (EER) of over 20% lower than oracle one-best system on semi-real data sets, and over 30% lower on simulation data sets, in test scenarios with both matched and mismatched channel numbers.
Multichannel processing is widely used for speech enhancement but several limitations appear when trying to deploy these solutions to the real-world. Distributed sensor arrays that consider several devices with a few microphones is a viable alternati ve that allows for exploiting the multiple devices equipped with microphones that we are using in our everyday life. In this context, we propose to extend the distributed adaptive node-specific signal estimation approach to a neural networks framework. At each node, a local filtering is performed to send one signal to the other nodes where a mask is estimated by a neural network in order to compute a global multi-channel Wiener filter. In an array of two nodes, we show that this additional signal can be efficiently taken into account to predict the masks and leads to better speech enhancement performances than when the mask estimation relies only on the local signals.
Recently, there is a research trend on ad-hoc microphone arrays. However, most research was conducted on simulated data. Although some data sets were collected with a small number of distributed devices, they were not synchronized which hinders the f undamental theoretical research to ad-hoc microphone arrays. To address this issue, this paper presents a synchronized speech corpus, named Libri-adhoc40, which collects the replayed Librispeech data from loudspeakers by ad-hoc microphone arrays of 40 strongly synchronized distributed nodes in a real office environment. Besides, to provide the evaluation target for speech frontend processing and other applications, we also recorded the replayed speech in an anechoic chamber. We trained several multi-device speech recognition systems on both the Libri-adhoc40 dataset and a simulated dataset. Experimental results demonstrate the validness of the proposed corpus which can be used as a benchmark to reflect the trend and difference of the models with different ad-hoc microphone arrays. The dataset is online available at https://github.com/ISmallFish/Libri-adhoc40.
We propose BeamTransformer, an efficient architecture to leverage beamformers edge in spatial filtering and transformers capability in context sequence modeling. BeamTransformer seeks to optimize modeling of sequential relationship among signals from different spatial direction. Overlapping speech detection is one of the tasks where such optimization is favorable. In this paper we effectively apply BeamTransformer to detect overlapping segments. Comparing to single-channel approach, BeamTransformer exceeds in learning to identify the relationship among different beam sequences and hence able to make predictions not only from the acoustic signals but also the localization of the source. The results indicate that a successful incorporation of microphone array signals can lead to remarkable gains. Moreover, BeamTransformer takes one step further, as speech from overlapped speakers have been internally separated into different beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا