ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Ad-hoc Beamforming Based on Speaker Extraction for Target-Dependent Speech Separation

230   0   0.0 ( 0 )
 نشر من قبل Ziye Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the research on ad-hoc microphone arrays with deep learning has drawn much attention, especially in speech enhancement and separation. Because an ad-hoc microphone array may cover such a large area that multiple speakers may locate far apart and talk independently, target-dependent speech separation, which aims to extract a target speaker from a mixed speech, is important for extracting and tracing a specific speaker in the ad-hoc array. However, this technique has not been explored yet. In this paper, we propose deep ad-hoc beamforming based on speaker extraction, which is to our knowledge the first work for target-dependent speech separation based on ad-hoc microphone arrays and deep learning. The algorithm contains three components. First, we propose a supervised channel selection framework based on speaker extraction, where the estimated utterance-level SNRs of the target speech are used as the basis for the channel selection. Second, we apply the selected channels to a deep learning based MVDR algorithm, where a single-channel speaker extraction algorithm is applied to each selected channel for estimating the mask of the target speech. We conducted an extensive experiment on a WSJ0-adhoc corpus. Experimental results demonstrate the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

We propose speaker separation using speaker inventories and estimated speech (SSUSIES), a framework leveraging speaker profiles and estimated speech for speaker separation. SSUSIES contains two methods, speaker separation using speaker inventories (S SUSI) and speaker separation using estimated speech (SSUES). SSUSI performs speaker separation with the help of speaker inventory. By combining the advantages of permutation invariant training (PIT) and speech extraction, SSUSI significantly outperforms conventional approaches. SSUES is a widely applicable technique that can substantially improve speaker separation performance using the output of first-pass separation. We evaluate the models on both speaker separation and speech recognition metrics.
Speech separation has been shown effective for multi-talker speech recognition. Under the ad hoc microphone array setup where the array consists of spatially distributed asynchronous microphones, additional challenges must be overcome as the geometry and number of microphones are unknown beforehand. Prior studies show, with a spatial-temporalinterleaving structure, neural networks can efficiently utilize the multi-channel signals of the ad hoc array. In this paper, we further extend this approach to continuous speech separation. Several techniques are introduced to enable speech separation for real continuous recordings. First, we apply a transformer-based network for spatio-temporal modeling of the ad hoc array signals. In addition, two methods are proposed to mitigate a speech duplication problem during single talker segments, which seems more severe in the ad hoc array scenarios. One method is device distortion simulation for reducing the acoustic mismatch between simulated training data and real recordings. The other is speaker counting to detect the single speaker segments and merge the output signal channels. Experimental results for AdHoc-LibiCSS, a new dataset consisting of continuous recordings of concatenated LibriSpeech utterances obtained by multiple different devices, show the proposed separation method can significantly improve the ASR accuracy for overlapped speech with little performance degradation for single talker segments.
122 - Xiyun Li , Yong Xu , Meng Yu 2021
Recently, our proposed recurrent neural network (RNN) based all deep learning minimum variance distortionless response (ADL-MVDR) beamformer method yielded superior performance over the conventional MVDR by replacing the matrix inversion and eigenval ue decomposition with two recurrent neural networks. In this work, we present a self-attentive RNN beamformer to further improve our previous RNN-based beamformer by leveraging on the powerful modeling capability of self-attention. Temporal-spatial self-attention module is proposed to better learn the beamforming weights from the speech and noise spatial covariance matrices. The temporal self-attention module could help RNN to learn global statistics of covariance matrices. The spatial self-attention module is designed to attend on the cross-channel correlation in the covariance matrices. Furthermore, a multi-channel input with multi-speaker directional features and multi-speaker speech separation outputs (MIMO) model is developed to improve the inference efficiency. The evaluations demonstrate that our proposed MIMO self-attentive RNN beamformer improves both the automatic speech recognition (ASR) accuracy and the perceptual estimation of speech quality (PESQ) against prior arts.
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings cr eated from additional clean context recordings of the two speakers as input to assist in attributing the different time-frequency bins to the two speakers. In experiments, we show that the proposed model yields good performance in the source separation task, and outperforms the state-of-the-art baselines. Specifically, separating speech from the challenging VoxCeleb dataset, the proposed model yields 4.79dB signal-to-distortion ratio, 8.44dB signal-to-artifacts ratio and 7.11dB signal-to-interference ratio.
Recently, ad-hoc microphone array has been widely studied. Unlike traditional microphone array settings, the spatial arrangement and number of microphones of ad-hoc microphone arrays are not known in advance, which hinders the adaptation of tradition al speaker verification technologies to ad-hoc microphone arrays. To overcome this weakness, in this paper, we propose attention-based multi-channel speaker verification with ad-hoc microphone arrays. Specifically, we add an inter-channel processing layer and a global fusion layer after the pooling layer of a single-channel speaker verification system. The inter-channel processing layer applies a so-called residual self-attention along the channel dimension for allocating weights to different microphones. The global fusion layer integrates all channels in a way that is independent to the number of the input channels. We further replace the softmax operator in the residual self-attention with sparsemax, which forces the channel weights of very noisy channels to zero. Experimental results with ad-hoc microphone arrays of over 30 channels demonstrate the effectiveness of the proposed methods. For example, the multi-channel speaker verification with sparsemax achieves an equal error rate (EER) of over 20% lower than oracle one-best system on semi-real data sets, and over 30% lower on simulation data sets, in test scenarios with both matched and mismatched channel numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا